For a given plant-compensator pair in closed-loop, it is shown that, if a simple matrix equation holds, the closed-loop system behaves like a functional observer of a linear function of the state of the plant. If such a function can be used to augment the plant output, it is possible to use a static output feedback from the augmented output, thus obtaining as closed-loop system the restriction of the original one to a suitable invariant subspace. A dual problem is also considered.

Galeani, S., Menini, L., Tornambe', A. (2003). A note on the structure of dynamic stabilizing controllers for linear time-invariant systems. In Proceedings of the American Control Conference (pp.2749-2754) [10.1109/ACC.2003.1243495].

A note on the structure of dynamic stabilizing controllers for linear time-invariant systems

GALEANI, SERGIO;MENINI, LAURA;TORNAMBE', ANTONIO
2003-01-01

Abstract

For a given plant-compensator pair in closed-loop, it is shown that, if a simple matrix equation holds, the closed-loop system behaves like a functional observer of a linear function of the state of the plant. If such a function can be used to augment the plant output, it is possible to use a static output feedback from the augmented output, thus obtaining as closed-loop system the restriction of the original one to a suitable invariant subspace. A dual problem is also considered.
2003 American Control Conference
Denver, CO
JUN 04, 2003-JUN 06, 2006
American Automation Control Council;IFAC
Rilevanza internazionale
2003
Settore ING-INF/04 - AUTOMATICA
English
Control system analysis; Feedback control; Matrix algebra; Stabilization; Linear time invariant systems; Linear systems
Intervento a convegno
Galeani, S., Menini, L., Tornambe', A. (2003). A note on the structure of dynamic stabilizing controllers for linear time-invariant systems. In Proceedings of the American Control Conference (pp.2749-2754) [10.1109/ACC.2003.1243495].
Galeani, S; Menini, L; Tornambe', A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/50233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact