This paper presents a study on developing a hybrid 3D position observer for a rover with acceleration and relative distance measurements. The observer design utilizes two different methodologies; a Trajectory Based Optimization Design (TBOD) and a Linear Matrix Inequality (LMI) method. We prove that, under the proposed solutions, the boundedness of the estimation error is guaranteed. The performance of the observer is evaluated and compared to a standard EKF using comprehensive Monte Carlo simulations.

Oliva, F., Mattogno, S., Tenaglia, A., Masocco, R., Martinelli, F., Carnevale, D. (2023). A Trajectory Based Optimization Approach for Hybrid Observer Design. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.1873-1878). IEEE [10.1109/CDC49753.2023.10383599].

A Trajectory Based Optimization Approach for Hybrid Observer Design

Oliva F.
Membro del Collaboration Group
;
Mattogno S.
Membro del Collaboration Group
;
Tenaglia A.
Membro del Collaboration Group
;
Masocco R.
Membro del Collaboration Group
;
Martinelli F.
Membro del Collaboration Group
;
Carnevale D.
Membro del Collaboration Group
2023-01-01

Abstract

This paper presents a study on developing a hybrid 3D position observer for a rover with acceleration and relative distance measurements. The observer design utilizes two different methodologies; a Trajectory Based Optimization Design (TBOD) and a Linear Matrix Inequality (LMI) method. We prove that, under the proposed solutions, the boundedness of the estimation error is guaranteed. The performance of the observer is evaluated and compared to a standard EKF using comprehensive Monte Carlo simulations.
2023 62nd IEEE Conference on Decision and Control (CDC)
Singapore
2023
Rilevanza internazionale
2023
Settore ING-IND/09
Settore IIND-06/B - Sistemi per l'energia e l'ambiente
English
Intervento a convegno
Oliva, F., Mattogno, S., Tenaglia, A., Masocco, R., Martinelli, F., Carnevale, D. (2023). A Trajectory Based Optimization Approach for Hybrid Observer Design. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.1873-1878). IEEE [10.1109/CDC49753.2023.10383599].
Oliva, F; Mattogno, S; Tenaglia, A; Masocco, R; Martinelli, F; Carnevale, D
File in questo prodotto:
File Dimensione Formato  
IEEE 6.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 604.69 kB
Formato Adobe PDF
604.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/368323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact