This paper presents a study on developing a hybrid 3D position observer for a rover with acceleration and relative distance measurements. The observer design utilizes two different methodologies; a Trajectory Based Optimization Design (TBOD) and a Linear Matrix Inequality (LMI) method. We prove that, under the proposed solutions, the boundedness of the estimation error is guaranteed. The performance of the observer is evaluated and compared to a standard EKF using comprehensive Monte Carlo simulations.
Oliva, F., Mattogno, S., Tenaglia, A., Masocco, R., Martinelli, F., Carnevale, D. (2023). A Trajectory Based Optimization Approach for Hybrid Observer Design. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.1873-1878). IEEE [10.1109/CDC49753.2023.10383599].
A Trajectory Based Optimization Approach for Hybrid Observer Design
Oliva F.
Membro del Collaboration Group
;Mattogno S.Membro del Collaboration Group
;Tenaglia A.Membro del Collaboration Group
;Masocco R.Membro del Collaboration Group
;Martinelli F.Membro del Collaboration Group
;Carnevale D.Membro del Collaboration Group
2023-01-01
Abstract
This paper presents a study on developing a hybrid 3D position observer for a rover with acceleration and relative distance measurements. The observer design utilizes two different methodologies; a Trajectory Based Optimization Design (TBOD) and a Linear Matrix Inequality (LMI) method. We prove that, under the proposed solutions, the boundedness of the estimation error is guaranteed. The performance of the observer is evaluated and compared to a standard EKF using comprehensive Monte Carlo simulations.File | Dimensione | Formato | |
---|---|---|---|
IEEE 6.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
604.69 kB
Formato
Adobe PDF
|
604.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.