In this paper, a position feedback controller is proposed to solve the tracking problem in rectangular billiards. Such a controller is obtained by transforming the billiard table into a surface on which the ball moves without experiencing any impact, i.e., by reflecting the billiard table rather than the ball trajectory, and designing a position feedback controller based on such an unfolded billiard table. Furthermore, it is shown how such an infinite billiard table can be mapped to the surface of a torus, thus leading to bounded trajectories of the ball.

Menini, L., Possieri, C., Tornambe', A. (2020). Trajectory tracking in rectangular billiards by unfolding the billiard table. In 21st IFAC World Congress (pp.6195-6200). Amsterdam : Elsevier B.V. [10.1016/j.ifacol.2020.12.1712].

Trajectory tracking in rectangular billiards by unfolding the billiard table

Menini L.;Possieri C.;Tornambe' A.
2020-01-01

Abstract

In this paper, a position feedback controller is proposed to solve the tracking problem in rectangular billiards. Such a controller is obtained by transforming the billiard table into a surface on which the ball moves without experiencing any impact, i.e., by reflecting the billiard table rather than the ball trajectory, and designing a position feedback controller based on such an unfolded billiard table. Furthermore, it is shown how such an infinite billiard table can be mapped to the surface of a torus, thus leading to bounded trajectories of the ball.
21st IFAC World Congress 2020
Berlin, Germany
2020
21
Rilevanza internazionale
2020
Settore ING-INF/04 - AUTOMATICA
Settore IINF-04/A - Automatica
English
Billiards
Feedback stabilization
Non-smooth impacts
Trajectory tracking
Intervento a convegno
Menini, L., Possieri, C., Tornambe', A. (2020). Trajectory tracking in rectangular billiards by unfolding the billiard table. In 21st IFAC World Congress (pp.6195-6200). Amsterdam : Elsevier B.V. [10.1016/j.ifacol.2020.12.1712].
Menini, L; Possieri, C; Tornambe', A
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S240589632032317X-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 639.56 kB
Formato Adobe PDF
639.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/294421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact