In this paper, by exploiting the concept of polynomial greatest common divisor, some algebraic tests are proposed to certify the structural properties of both discrete-time and continuous-time linear systems. Furthermore, by exploiting the concept of parametric greatest common divisor, such results are extended to certify the structural properties of systems whose dynamical matrices depend polynomially on some parameters.

Menini, L., Possieri, C., Tornambè, A. (2020). Algebraic certificates for the structural properties of parametric linear systems. In 21st IFAC World Congress: Berlin, Germany, 11–17 July 2020 (pp.4676-4681). Amsterdam : Elsevier [10.1016/j.ifacol.2020.12.517].

Algebraic certificates for the structural properties of parametric linear systems

Menini, Laura;Possieri, Corrado;Tornambè, Antonio
2020-01-01

Abstract

In this paper, by exploiting the concept of polynomial greatest common divisor, some algebraic tests are proposed to certify the structural properties of both discrete-time and continuous-time linear systems. Furthermore, by exploiting the concept of parametric greatest common divisor, such results are extended to certify the structural properties of systems whose dynamical matrices depend polynomially on some parameters.
21st IFAC World Congress 2020
Berlin, Deutschland
2020
21
Rilevanza internazionale
2020
Settore ING-INF/04 - AUTOMATICA
Settore IINF-04/A - Automatica
English
Algebraic tests; Controllability; Linear systems; Non-stabilizable systems; Reachability; Structural properties
hdl:2108/294413
Intervento a convegno
Menini, L., Possieri, C., Tornambè, A. (2020). Algebraic certificates for the structural properties of parametric linear systems. In 21st IFAC World Congress: Berlin, Germany, 11–17 July 2020 (pp.4676-4681). Amsterdam : Elsevier [10.1016/j.ifacol.2020.12.517].
Menini, L; Possieri, C; Tornambè, A
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2405896320308144-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 480.42 kB
Formato Adobe PDF
480.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/294413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact