Ensemble Machine Learning (EML) consists of the combination of multiple Artificial Intelligence algorithms. This paper presents an efficient FPGA implementation of an Ensemble based on Long Short-Term Memory Networks (LSTM). For an efficient implementation, the proposed design uses the Partial Reconfiguration function available for FPGAs. Results are presented in terms of resources utilization, reconfiguration speed, power consumption and maximum clock frequency.

Cardarilli, G.c., Di Nunzio, L., Fazzolari, R., Giardino, D., Matta, M., Re, M., et al. (2019). Efficient ensemble machine learning implementation on FPGA using partial reconfiguration. In ApplePies 2018: Applications in electronics pervading industry, environment and society (pp.253-259). Springer [10.1007/978-3-030-11973-7_29].

Efficient ensemble machine learning implementation on FPGA using partial reconfiguration

Cardarilli G. C.;Di Nunzio L.;Fazzolari R.;Re M.;Silvestri F.;Spano S.
2019-01-01

Abstract

Ensemble Machine Learning (EML) consists of the combination of multiple Artificial Intelligence algorithms. This paper presents an efficient FPGA implementation of an Ensemble based on Long Short-Term Memory Networks (LSTM). For an efficient implementation, the proposed design uses the Partial Reconfiguration function available for FPGAs. Results are presented in terms of resources utilization, reconfiguration speed, power consumption and maximum clock frequency.
International conference on applications in electronics pervading industry, environment and society (APPLEPIES 2018)
Pisa (Italia)
2018
6.
Rilevanza internazionale
contributo
2019
Settore ING-INF/01 - ELETTRONICA
English
Intervento a convegno
Cardarilli, G.c., Di Nunzio, L., Fazzolari, R., Giardino, D., Matta, M., Re, M., et al. (2019). Efficient ensemble machine learning implementation on FPGA using partial reconfiguration. In ApplePies 2018: Applications in electronics pervading industry, environment and society (pp.253-259). Springer [10.1007/978-3-030-11973-7_29].
Cardarilli, Gc; Di Nunzio, L; Fazzolari, R; Giardino, D; Matta, M; Re, M; Silvestri, F; Spano, S
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/292936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact