We consider a representation of the path groupoid over the group of diffeomorphisms of the base space of a Hilbert bundle (equipped with a unitary parallel transport). The Schroedinger representation in (Weyl form) appears as a flat and measure-invariant particular case of this representation. We prove that our representation induces a representation of Mensky's path group and that generators of the representation of one-parameter groups of the path group are given by the covariant derivative plus a volume correction. We prove that, as in the case of locally compact groups, the imprimitivity systems of this representation is irreducible if and only if the diffeomorphisms group acts transitively on the manifold and the inducing representation is irreducible. In our case the inducing subgroup is the loop group and the inducing representation is the holonomy group of the parallel transport.
Accardi L., & Gibilisco P. (1992). The Schroedinger representation on Hilbert bundles. In Probabilistic Methods in Mathematical Physic (pp.1-15). World Scientific PUBL CO PTE LTD.
Autori: | |
Autori: | Accardi L.; Gibilisco P. |
Titolo: | The Schroedinger representation on Hilbert bundles |
Nome del convegno: | Probabilistic Methods in Mathematical Physic |
Rilevanza: | Rilevanza internazionale |
Sezione: | su invito |
Data di pubblicazione: | 1992 |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Lingua: | English |
Tipologia: | Intervento a convegno |
Citazione: | Accardi L., & Gibilisco P. (1992). The Schroedinger representation on Hilbert bundles. In Probabilistic Methods in Mathematical Physic (pp.1-15). World Scientific PUBL CO PTE LTD. |
Appare nelle tipologie: | 02 - Intervento a convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Schrodinger1992.pdf | Articolo | N/A | Open Access EmbargoVisualizza/Apri |