Flood early warning systems (FEWS) are effective means for saving human lives from the devastating impacts of extreme hydrological events. FEWS relies on hydrologic monitoring networks that are typically expensive and challenging to design. This issue is particularly relevant when identifying the most cost-efficient number, type, and positioning of the sensors for FEWS that may be used to take decisions and alert the population at flood risk. In this study, we focus on a widely recognized FEWS solution to analyze hydrological monitoring and forecasting performances expressed as discharge in various cross-sections of a drainage network. We propose and test a novel framework that aims to maximize FEWS performances while minimizing the number of sections that need instrumentation and suggesting optimal sensor placement to enhance forecasting accuracy. In the selected case study, we demonstrate through feature importance measure that only four sub-basins can achieve the same forecasting performance as the potential twenty-six cross-sections of the local hydrologic monitoring network. The operational dashboard resulting from our proposed framework can assist decision-makers in maximizing the performance and wider adoption of flood early warning systems across geographic and socio-economic scales.

Grimaldi, S., Cappelli, F., Papalexiou, S.m., Petroselli, A., Nardi, F., Annis, A., et al. (2024). Optimizing sensor location for the parsimonious design of flood early warning systems. JOURNAL OF HYDROLOGY. X, 24 [10.1016/j.hydroa.2024.100182].

Optimizing sensor location for the parsimonious design of flood early warning systems

Nardi F.;
2024-08-01

Abstract

Flood early warning systems (FEWS) are effective means for saving human lives from the devastating impacts of extreme hydrological events. FEWS relies on hydrologic monitoring networks that are typically expensive and challenging to design. This issue is particularly relevant when identifying the most cost-efficient number, type, and positioning of the sensors for FEWS that may be used to take decisions and alert the population at flood risk. In this study, we focus on a widely recognized FEWS solution to analyze hydrological monitoring and forecasting performances expressed as discharge in various cross-sections of a drainage network. We propose and test a novel framework that aims to maximize FEWS performances while minimizing the number of sections that need instrumentation and suggesting optimal sensor placement to enhance forecasting accuracy. In the selected case study, we demonstrate through feature importance measure that only four sub-basins can achieve the same forecasting performance as the potential twenty-six cross-sections of the local hydrologic monitoring network. The operational dashboard resulting from our proposed framework can assist decision-makers in maximizing the performance and wider adoption of flood early warning systems across geographic and socio-economic scales.
1-ago-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CEAR-01/B - Costruzioni idrauliche e marittime e idrologia
English
Continuous hydrological modelling
Data driven flood forecasting
Feature importance measures
Flood early warning systems
Grimaldi, S., Cappelli, F., Papalexiou, S.m., Petroselli, A., Nardi, F., Annis, A., et al. (2024). Optimizing sensor location for the parsimonious design of flood early warning systems. JOURNAL OF HYDROLOGY. X, 24 [10.1016/j.hydroa.2024.100182].
Grimaldi, S; Cappelli, F; Papalexiou, Sm; Petroselli, A; Nardi, F; Annis, A; Piscopia, R; Tauro, F; Apollonio, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2024_Grimaldi et al (J Hydrology X) Optimizing sensor location for the parsimonious design of flood early warning systems.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/395323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact