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A B S T R A C T

Flood early warning systems (FEWS) are effective means for saving human lives from the devastating impacts of
extreme hydrological events. FEWS relies on hydrologic monitoring networks that are typically expensive and
challenging to design. This issue is particularly relevant when identifying the most cost-efficient number, type,
and positioning of the sensors for FEWS that may be used to take decisions and alert the population at flood risk.
In this study, we focus on a widely recognized FEWS solution to analyze hydrological monitoring and forecasting
performances expressed as discharge in various cross-sections of a drainage network. We propose and test a novel
framework that aims to maximize FEWS performances while minimizing the number of sections that need
instrumentation and suggesting optimal sensor placement to enhance forecasting accuracy. In the selected case
study, we demonstrate through feature importance measure that only four sub-basins can achieve the same
forecasting performance as the potential twenty-six cross-sections of the local hydrologic monitoring network.
The operational dashboard resulting from our proposed framework can assist decision-makers in maximizing the
performance and wider adoption of flood early warning systems across geographic and socio-economic scales.

1. Main

The increasing impacts of hydro-meteo extremes cause billions of
damages and thousands of deaths every year (Rohde, 2023; Rodell and
Li, 2023; Bevere and Remondi, 2022). Nuisance effects of flooding are
particularly devastating and uncontrolled in riverine areas that often
lack flood risk knowledge and proper awareness of the exposed popu-
lation (Devitt et al., 2023). Earth observation and satellite-driven
monitoring are tackling this knowledge gap, but observing and fore-
casting flooding from space cannot be the unique solution (Munasinghe
et al., 2023). Remote sensing of uplands and small-scale river systems is
currently impacted by the size and vegetation cover that avoid accurate
observation of water dynamics. Global efforts are fostering to protect
our society from floods. Holistic solutions integrating structural and
non-structural measures are being financed and engineered to mitigate
flood risk (Merz et al., 2021; Jongman, 2018). Flood protection in-
frastructures (e.g. levees, artificial storage) and nature-based solutions
are recognized to be effective but not sufficient alone (Recanatesi and
Petroselli, 2020). Non-structural measures, like hazard zoning,
increasing resiliency, and awareness of flood-prone areas are funda-
mental as well as preparing, educating, evacuating, and floodproofing
assets at risk.

Among non-structural measures, Flood Early Warning Systems
(FEWS) represent a key technology for risk protection and mitigation of
hydro-extreme events (Merz et al., 2021). Nonetheless, designing and
effectively operationalizing FEWS is a significant scientific, economic,
and socio-cultural challenge. From the scientific point of view, the
distributed and uncertain nature of hydro-extremes and the complexity
of simulating water-urban feature interactions determine serious issues
in the engineering and positioning of sensors supporting FEWS. It is not
only an issue of too few sensors as related to the complexity of the hy-
drologic phenomena. It is a more generalized issue of the positioning of

available monitoring equipment about the need to simulate rapidly
changing distributed hydrodynamic state variables (e.g. discharge,
water levels) and maximizing flood forecasting performances. More-
over, limited financial resources exacerbate the scientific-technical issue
considering that available economic resources require to balance the
need to install more sensors with the effort to develop more sophisti-
cated and accurate flood models. Furthermore, we posit that effective
FEWS requires building and adapting to indigenous social and cultural
settings. Trust and engagement of flood risk stakeholders, from river
basin management entities to local municipalities, is a FEWS challenge
for effective protection and awareness of the affected communities. As a
result, FEWS implementation and the hydraulic engineering design
problem related to monitoring systems across all scales, from coastal
areas to mountain domains, challenge flood managers who are called to
make important decisions on where and how to position flood sensors.
This is a global and socio-economically relevant challenge and is still an
open scientific topic to date.

FEWS operations and performances face several limitations related
to the availability of hydrologic monitoring observations in terms of
spatial coverage and temporal resolution, which hinder their wide-
spread implementation. The existing sensor placement in operational
FEWS is often based on subjective or logistic criteria (e.g. urban feature
distribution; river segment spacing, bridge position) rather than relying
on quantitative statistical frameworks. To date FEWS configurations
often lead to either over-monitoring or under-monitoring. As a conse-
quence, FEWS decision makers, driven by a lack of adequate financial
resources to cover all river reaches, are unable to produce a parsimo-
nious, yet efficient, warning system. Recent surveys confirm that FEWS
at present is failing to protect society from flood risk due to inadequate
hydrological network coverage and backup equipment, flood models
that are not accurate or unable to produce reliable forecasts, and inap-
propriate technical skills, resources, and institutional support of
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floodplain managers (Perera, 2019). The lack of FEWS is particularly
dramatic in developing countries where the vulnerability of local
economies and infrastructure is higher and the social impacts of floods
more devastating. With such aim, the World Meteorological Organiza-
tion (WMO) Severe Weather Forecasting Programme (SWFP) has been
working since its inception in 2010 to strengthen the capacity of the
National Meteorological and Hydrological Services (NMHSs) in devel-
oping countries for improved forecasts and warnings of extreme events
(World Meteorological Organization, 2010).

In light of these challenges, this paper introduces a novel framework
to address FEWS design problems based on enhanced understanding and
consideration of distributed statistical specifications of basin response
dynamics. The framework offers decision-making support for mitigating
or resolving these design challenges and aims to improve the overall
performance of FEWS. Importantly, it is applicable in a wide range of
basin conditions, from completely ungauged to fully instrumented ba-
sins, and can be applied throughout various stages of FEWS develop-
ment, including initial design, maintenance, or assessment of
operational systems.

The proposed framework is based on the following four steps (see
Fig. 1). (1) A terrain analysis procedure is used to disaggregate the
investigated basin into n sub-basins and identify outlets and confluence
nodes. (2) A semi-distributed hydrological model is applied to generate
synthetic rainfall and runoff scenarios. A large flood event dataset is
simulated, and a sub-sample (with m dimension) is selected. Following
this step, m flood events characterized by n + 1 hydrographs (n sub-
basins plus the whole outlet) are available for training and testing ma-
chine learning techniques. (3) The forecast performances and optimal
early warning lag times are then evaluated. (4) Feature Importance
Measures (FIMs) are applied to the operative dataset, to identify the
most influential nodes. These nodes provide the same forecast perfor-
mances to the whole set of sub-basins, allowing for a parsimonious
FEWS design that suggests the minimal number of nodes needed for the
machine learning tool to develop timely flood warnings effectively.

As a case study, we select the most challenging option, a medium-
sized basin, with a fully ungauged drainage network and without a
preexisting FEWS. We illustrate the peculiarities of the proposed
framework and the possible outcome available for the decision-makers
to optimize the FEWS design, while in the discussion we point out

some general possible applications, limitations, and future perspectives.

2. Identifying the most influential sub-basins

The terrain analysis method, characterizing the first step of the
proposed framework, serves to the identification of the sub-basins that
will be given as input for the semi-distributed hydrological model. Fig. 2
reports three specific moments of the analysis, showing the digital
elevation model (Fig. 2a) on which the terrain analysis procedure is
applied for tailoring the 21 sub-basins (Fig. 2b) and the 27 nodes (sub-
basins outlets and confluence nodes). This first river basin terrain hy-
drologic analysis, and the resulting sub-basins and nodes characteriza-
tion, also support the creation of the list of potential optimal monitoring
node-basin sub-set that will maximize FEWS performances. The pro-
posed case study applies the procedure by enforcing aminimal sub-basin
contributing area equal to 15 km2 to guarantee an appropriate appli-
cation of the rainfall-runoff model. In the middle plot of Fig. 2 the
raingauges used for calibrating the rainfall simulation model (CoSMoS)
are identified. CoSMoS generates seven time series of 1000 years dura-
tion at 15 min of time resolution preserving spatial and temporal
correlations.

Using the land use input and the synthetic rainfall time series, the
COSMO4SUB hydrological model is applied on the 21 sub-basins
providing runoff time series (again 1000 years at 15 min of time reso-
lutions). Propagating them in the drainage network, runoff time series
are also available at the 6 confluence nodes. Details on the framework
application and the resulting dataset characteristics are provided in the
Method Section and the Supplementary material (Sections S2 and S3).

The available runoff time series were filtered out to sample a dataset
of 5826 flood events at the outlet and identify 1193 events with peak
discharge in the range 100–200 m3/s. This flood peak range corresponds
to critical conditions for the selected FEWS case study (see case study
description section for further details). Three early warning time lags
(defined here as interval ahead forecast) are investigated: 6, 8, and 10 h
spanning from a minimum warning time to a maximum time span
associated to the time needed by the entire basin to transfer rainfall to
the outlet (i.e. maximum flood hydrograph base time). To ensure a
robust forecast analysis, avoiding the bias due to the heterogeneity of
hydrological response or the partial contribution of sub-basins, only

Fig. 1. Proposed framework for the design of parsimonious Flood Early Warning System. From left to right: simulation of synthetic flood event database; forecast
with data-driven tools; selection of the most influential sub-basins. Permutation Feature Importance − PFI, Shap feature importance − SHAP, and Derivative-based
importance − kALE are the acronyms of the three FIMs suggested in the framework.
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flood events with a duration greater than 36 h are considered, limiting
the dataset to 547 events. Four machine learning (ML) models are
employed (Linear model − LM, Least Absolute Shrinkage and Selection
Operator Regression − LASSO, Multivariate Adaptive Regression Splines
model − MARS, and Random Forest − RF) using 80 % of the dataset as
the training set and 20 % as the testing set. Three performance indexes
suggest that the RF outperforms the other ML models for each time lag

providing a promising relative peak error equal to 7 %. Details on per-
formances, comparisons among benchmarks and forecasted values are
provided in Supplementary material (Section S1).

Three FIMs (Permutation Feature Importance (Breiman, 2001) −

PFI, SHapley Additive explanations feature importance (Shapley, 1952;
Lundberg and Lee, 2017) − SHAP, and derivative-based importance
measure (Cappelli, 2023) − κALE) are applied to rank the sub-basins

Fig. 2. Step 1 of the proposed framework: sub-basin selection. From the Digital Elevation Model (left panel) the implemented terrain analysis procedure identifies
sub-basins (grey contour lines in the central panel), outlets (red points), and confluence nodes (blue points in the right panel). In the central panel, raingauges
location is shown (blue triangles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Estimates of the three feature importance measures (PFI, SHAP, kALE) for time lag equal to 6 h sorted in descending order. Values are normalized to
facilitate the identification of the most important sub-basins. (b) Performance indices (black line: MAREAdj; gray line: RPE; dashed line: BIASAdj) for different RF
configurations (“cfg”). “cfg1” means that the RF is applied with only the sub-basin 8 as input. “cfg2” means that the RF is applied with the sub-basins 8 and 4 as input,
and so on. The sequence of sub-basin codes in abscissa is the ranking average result. Horizontal lines refer to the associated index values estimated using all 26 nodes
as input.
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according to their influence on the RF using a time lag equal to 6 h.
These measures are selected among the available importance measures
because they turned out to be the most robust in hydrological applica-
tions (Cappelli and Grimaldi, 2023). Indeed, such measures appear to be
less sensitive compared to the other measures to non-Gaussian distri-
butions, presence of auto- and cross-correlations, and presence of
collinearity. Since this latter could have a significant impact on the final
results, we removed the sub-basins (sub-basin codes: 17, 26, 11, 6, 20,
22) whose signal is strongly correlated with that recorded at the outlet
(ρ > 0.9), keeping only those that are physically disconnected from each
other. Fig. 3 shows the estimates of the three FIMs using the RF pre-
dictions. To facilitate comparison between FIMs, the estimates are
normalized (i.e., the values are within the range of 0 and 1). These es-
timates are sorted in descending order in graph a) of Fig. 3. This allows
us to easily identify the associated importance ranking resulting from
each FIM used. Calculating the average ranking we obtain that the sub-
basins 8, 4, 12, and 7 are the most influential. As further evidence of
their role and effect on the MLmodel prediction, in graph b) of Fig. 3, we
report the behavior of the RF performance (expressed in terms of Mean
Absolute Relative Error MAREAdj, the Relative Peak Error RPE, and the
Bias Adjusted BIASAdj) exhibited using an incremental approach. Spe-
cifically, we construct multiple RF configurations (cfg) by exploiting the
average ranking obtained. The first configuration includes only the most
influential sub-basin; the second includes only the first two most influ-
ential sub-basins, and so on. This graph shows that the minimum error (i.
e., the best performance) is reached with only the first four sub-basins.
Details on the FIMs procedure here adopted and results related to the
8- and 10-hour Lag are reported in the Method Section and Supple-
mentary materials (Section S5).

3. FEWS monitoring decision-maker dashboard

The operational value of the proposed framework was summarized
by designing and producing a dashboard to process modelling results
into useful information for the decision-maker. The dashboard allows to
easily identify the optimal FEWS design strategy with specific regard to
the most important subbasins for FEWS optimization. Fig. 4 shows an
example of proposed framework results and dashboard infographics.
The three basin maps refer to the three different time lags and show (in

gray) the most influential nodes and their contributing areas. It is
evident, as expected, that by increasing the time lag the most influential
nodes propagate upstream. The colored bars suggest the Relative Peak
Errors, the Mean Absolute Relative Errors, and the Bias Adjusted values
vary as the time lag varies. Moreover, by increasing the early warning
time, performance significantly deteriorates. In the present case study,
the decision-maker can reach the following conclusions: (a) acceptable
forecast performance is guaranteed only for the lowest lag (6 h), (b) for
the optimal lag, instrumenting only 3 or 4 cross-sections corresponding
to the nodes 8, 4, 12, and 7 allows one to maximize the FEWS
performance.

4. Discussion

The proposed framework enables the design of parsimonious FEWS,
as it discriminates the role of each sub-basin by identifying the most
influential nodes for installing instrumentation. The proposed case study
represents the most challenging condition of an ungauged region where
monitoring network and runoff data for calibration are not available.
However, the results are encouraging. Indeed, the framework can pro-
vide useful suggestions for the decision-makers for the FEWS design.
However, the usefulness of the proposed procedure is not limited to this
challenging situation, but can contribute also to the following cases:

(a) A well-monitored large basin without an existing FEWS. In this
case, a more effective semi-distributed or distributed hydrologi-
cal model can be applied (through calibration) to allow a more
realistic synthetic flood event dataset. The latter, besides being
crucial for the feature importance analysis and consequently for
selecting the most influential nodes, could be adopted for a pre-
calibration of the machine learning tool. Indeed, the usual
bottleneck of data-driven FEWS forecasting tools is the absence of
a large dataset of observed flood events on several basin nodes. In
the most favorable cases, the available dataset, although rich, is
very heterogeneous concerning the hydrograph peak discharge.
This could reduce the ML forecast performance since the ML
model is sensitive to outliers (Breiman, 2001). If the hydrological-
hydraulic model is well calibrated, the simulated dataset should
be enough realistic for calibrating the ML models and the

Fig. 4. FEWS monitoring Decision-maker dashboard. In the top panels, identification of the most influential sub-basins is provided for 6-, 8-, and 10-hour time lags.
At the bottom, the colored bars correspond to the values of the three performance indices obtained by varying the time lags. Red numbers are the sub-basin codes.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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framework could be ready to be operationally applied with the
observed data. Such potential will be easily verified in future
research by considering several modeling options in fully gauged
conditions and comparing the simulated and observed datasets.

(b) A basin with an existing FEWS with a poor monitoring network.
This would improve the calibration by making more realistic the
simulated dataset. The framework dashboard would provide
useful feedback for evaluating whether the current network is
poor, how and where it could be improved by adding further
instrumented nodes, or simply suggesting their new optimal
location.

(c) A basin with an existing FEWS with a rich monitoring network. In
such case, useful feedback could be suggested to eventually
reduce the number of instrumented nodes and/or relocate some
of them to increase the FEWS performance. Moreover, it would be
effective to invest more resources in monitoring the most influ-
ential sub-basins to ameliorate their rainfall-runoff forecast
model that, in cascade, will increase the forecast time lag.

(d) As mentioned in the premises, the proposed framework has also a
positive effect on enhancing the knowledge of the basin response.
Knowing the most influential sub-basins contributing to the
global basin response will help to investigate the physical reasons
for exploring some hydro-geomorphometric proxies for such
behavior.

5. Methods

5.1. Case study

As a case study, we selected the Velino river basin, in central Italy, a
left tributary of the Tiber river, i.e., the river flowing through the city of
Rome. The outlet cross section is located in Rieti town, downstream the
conjunction with the Salto river. The total contributing area is equal to
518.2 km2. The geomorphometric analysis useful for the hydrological
model implementation refers to the COPERNICUS (Copernicus, 2023)
Digital Elevation Model (DEM) at 25 m resolution, while the land cover
information is derived from the CORINE (CORINE project, 2000) Pro-
gram. The investigated area exhibits a topography characterized by
rolling hills, valleys, and lakes ranging from 400 m to 2100 m. Land use
predominantly encompasses agricultural activities, including vineyards,
olive groves, and cereal cultivation, interspersed with settlements. This
region also features forested areas and natural reserves, fostering
biodiversity conservation and recreational opportunities. As described
in the previous Sections, the first framework step concerns the identi-
fication of the sub-watersheds that will serve as input for the semi-
distributed hydrological model. Based on the methodology described
in the next Section, the case study was discretized in 21 sub-basins,
characterized by contributing areas ranging between 13 and 518 km2

(average value equal to 24.6 km2), by concentration times (estimated
using Giandotti’s formula (Giandotti, 1934)) between 1 and 5 h (average
value equal to 2.1 h), and by Curve Number (CN) values (NRCS look-up
tables (McCuen, 1998)) between 60.7 and 64.6 (average value equal to
62.4). See the Section S6 of Supplementary materials for more details of
the investigated area.

In order to calibrate the rainfall simulation model, we selected 20
years of contemporaneous rainfall observations at 15-minute time res-
olutions (obtained from Lazio Region database (Region, 2023). Tech-
nical reports available at Autorità di Bacino Distrettuale dell’Italia
Centrale (ADBAC (Papalexiou, 2018) suggest that the discharge range of
100–200 m3/s corresponds to the warning water depth when the inun-
dation is expected to begin at the basin outlet cross-section.

5.2. Multisite Rainfall simulation model using CoSMoS

Multisite rainfall generation poses significant challenges, particu-
larly due to limitations in observational data, especially at fine

spatiotemporal scales. These limitations include missing data at various
stations and quality issues arising from duplicated values (ties) and
mismeasurements. Furthermore, complex cross-correlation properties
(such as spatial non-stationarity) and autocorrelation characteristics at
each station can create feasibility issues in calibrating a multisite rain
model (Papalexiou et al., 2018). These challenges are compounded by
seasonal and spatial variability, wherein the probability distribution
describing rainfall varies with both season and location. Collectively,
these challenges can compromise the accuracy of analyses, introducing
biases into the statistical properties of the simulated rainfall. Inaccura-
cies at fine scales can be magnified at aggregated scales, and inaccura-
cies at individual stations can have ripple effects at catchment scales,
resulting in disparities in total catchment rainfall.

Here, the multisite rainfall simulation at the 15-minute resolution is
conducted using the CoSMoS framework (Papalexiou, 2018; Papalexiou
et al., 2018; Papalexiou and Serinaldi, 2020; Papalexiou et al., 2021;
Papalexiou, 2022; Papalexiou et al., 2023; Papalexiou et al., 2021).
Specifically, the mixed-uniform CoSMoS is applied (see reference 25 for
details), with an additional adjustment to calibrate daily rainfall at the
catchment. The simulation explicitly reproduces the marginal distribu-
tion, accounting for the probability of dry, at each station and season, as
well as the cross and autocorrelation properties. To streamline the
reader’s understanding and avoid redundancy in detailing modeling
procedures, which are described in the referenced works, we provide a
concise overview of the scheme’s modeling steps. In implementing this
scheme, a set of sequential steps is executed on a monthly basis for each
station:

Original Data Evaluation: the original 15-minute precipitation time
series are examined to assess distribution and correlation properties.
Distribution Transformation: the observed precipitation time series
are transformed to adhere to a mixed-uniform marginal distribution.
Correlation Analysis: the mixed-uniform time series are used to
calculate empirical spatial correlations between all pairs of stations
and estimate the autocorrelation structure at each station.
Parametric Correlation Description: the mixed-uniform correlations
are adjusted through the mixed-uniform correlation transformation
function to represent those of a process with Gaussian marginals.
Then, parametric spatial and temporal correlation structures are
fitted to the estimated empirical Gaussian correlations.
Time Series Generation: time series are generated using a vector
autoregressive model, incorporating the estimated Gaussian spatial
and temporal correlation structures.
Conversion to 15-Minute Precipitation: the generated Gaussian time
series are converted back to 15-minute precipitation by using the
marginal distributions describing the original data.

As mentioned earlier, the generated rainfall is adjusted to align with
daily rainfall in the catchment. Multisite simulations face challenges in
precisely mimicking observed features due to mathematical limitations
in model settings (such as positive definite correlation matrices). In any
case, observed characteristics such as distributions and correlations do
not perfectly mirror the actual process due to random fluctuations. The
use of parametric functions to represent probabilities and correlations
makes multisite schemes technically feasible but may potentially
misrepresent local variations. Therefore, even if the fine-scale simula-
tion reproduces desired characteristics when aggregated over space and
time, it might not match the observed process at larger scales. This
mismatch can impact hydrologic models, causing more or less intense
events to be simulated at the catchment level, resulting in larger or lower
floods. To align with the distribution of daily rainfall in the catchment,
we aggregate the simulated and observed 15-minute precipitation at the
daily scale over the catchment. Then, we identify the probability dis-
tributions Go(x) and Gs(x) for the observed and simulated daily nonzero
precipitation over the catchment, respectively. The adjusted daily

S. Grimaldi et al. Journal of Hydrology X 24 (2024) 100182 

5 



simulated values x̃s are then given by x̃s(t) = G− 1
o (Gs(xs(t) ) ). Finally,

the 15-min simulation is adjusted by multiplying the 15-min values of
each day by a corresponding scaling factor x̃s(t)/xs(t) of each day.
Section S2 in the Supplementary Material provides an assessment of the
simulated rainfall time series.

5.3. Semi-distributed continuous rainfall-runoff model

The 21 sub-basins and 6 confluence nodes are selected by applying
an automatic GIS-based algorithm developed for the present study to
generalize the procedure for any river basin. The input DEM has been
hydrologically reconditioned using the official digitized stream network
released by the regional authority (Lazio Region). Standard terrain
analysis algorithms (Soille, 2004; Jenson and Domingue, 1988) are
applied to generate the filled DEM, flow direction, flow accumulation,
and stream network grids. The algorithm generates different nodes
along the DEM-based extracted stream network starting from a user-
defined threshold area (ThrA) for headwater selection, a minimum dis-
tance (d) or stream confluence identification, and a minimum contrib-
uting area (minA) for the sub-basin picking. The ThrA, d, and minA
parameters are here fixed respectively to 15 km2, 5 km, and 15 km2. The
selected ThrA is consistent with the visible stream features from satellite
imagery. The d and minA parameters were considered a compromise
among having a minimum number of sub-basins, a significant contri-
bution to the flood wave propagation, and a minimum distance among
contiguous outlets consistent with the time step of the flow propagation
model. The procedure allows a 20 % tolerance for the sub-basins
threshold area to adapt for specific configurations of the stream
network (e.g. instead of having one big subbasin along a stream with
almost doubling the threshold area, it is better to have two subbasins
divided by a node where one of them is slightly smaller than the
threshold value).

Once the 21 sub-basins are selected and the rainfall synthetic time
series are simulated, a continuous hydrological rainfall-runoff model is
applied to generate the runoff time series at each outlet. In the present
work, we refer to the COSMO4SUB (Continuous Simulation Model For
Small and Ungauged Basin) rainfall-runoff model (Grimaldi et al., 2012;
Grimaldi et al., 2021). The original model version consists of four main
steps: (1) rainfall scenario simulation, (2) excess rainfall estimation, (3)
excess rainfall-runoff transformation, and (4) design simulation strat-
egy; in the present application, we refer only to steps 2 and 3.

Given a sub-basin and the synthetic rainfall time series generated
using the raingauge observation nearest to the center of mass of the
basin area, step 2 of the COSMO4SUB model is applied. A mixed pro-
cedure CN4GA (Curve Number for Green-Ampt (Grimaldi et al., 2013))
allows for estimating the excess rainfall time series using the NRCS-CN
method to quantify excess rainfall depth at the event scale and the
Green-Ampt equation to distribute this depth within the rainfall event.
The Green-Ampt parameters are automatically estimated by the pro-
cedure constraining the equation to give the same excess rainfall depth
as estimated by NRCS-CN, preserving the procedure as calibration-free.
The only parameter needed to be specified by the user is the CN value of
the NRCS-CN method, which is automatically estimated using look-up
tables linking CN with soil type and land use. An important point to
note is that, compared to the event-based procedure, an extra parameter
called the separation time (Ts) is required. Ts is used for identifying
isolated rainfall events and indicates the duration of the dry period (or
nearly dry period) required for the initial abstraction to become effective
again. A previous study (Grimaldi et al., 2021) examined the sensitivity
of this parameter (in the range of 18–30 h) using a long synthetic rainfall
time series, and it was found that its effect on the design hydrograph is
minimal. A reasonable value of 24 h for Ts, as also suggested by NRCS-
CN implementation, is considered appropriate and it is employed here.

The step 3 of the model involves the excess rainfall-runoff trans-
formation using the WFIUH model, which is a modified version of the

traditional IUH (Instantaneous Unit Hydrograph) approach, specifically
designed for ungauged conditions (Grimaldi et al., 2012). This approach
allows for the optimization of available digital topography information
by enforcing hydrogeomorphic processes that represent governing fac-
tors of floodplain generation dynamics (Annis et al., 2019; Nardi et al.,
2018; Nardi et al., 2019). The WFIUH model uses the travel time dis-
tribution of watershed DEM cells as the IUH definition, providing a
calibration-free IUH. The flow path, hillslope-channel discrimination,
and velocity estimation on hillslopes are easy steps that are useful in
quantifying the flow time or travel time distribution. Flow paths have
been determined using a classic D8 approach (Jenson and Domingue,
1988). Channel points have been selected (Tarboton et al., 1991) when
having a total contributing area greater than 1 km2. Hillslope velocities
have been assigned linking them to local slope and land cover (Grimaldi
et al., 2010). The channel velocity has been automatically quantified
such that the center of mass of WFIUH corresponds to the basin lag time,
which is estimated as 60 % of the basin concentration time (Petroselli
and Grimaldi, 2018).

The result of the COSMO4SUB step 3 implementation provides a
synthetic runoff time series (1000 years at 15 min of time resolution) in
each sub-basin.

Given the runoff information in the 21 sub-basins, a simplified hy-
draulic propagation model is implemented and applied in order to
quantify the runoff time series in the residual 6 confluence nodes,
making available the whole hydrological information useful for the
FEWS analysis. The combination and propagation of the sub-basin outlet
time series is carried out with the Muskingum-Cunge method by
imposing a spatial discretization such that the Courant number
approximately equals 1 for the mean flow rate at the input node (Ponce,
2014).

5.4. Feature importance measures (FIMs)

FIMs are agnostic tools for any supervised ML model (i.e., linear
regression, random forests, gradient boosting, neural networks). ML
importance measures are typically defined using the predictive perfor-
mance of an ML model. These techniques help one to understand the
importance of input variables in a predictive ML model, shedding light
on the underlying relationships between the input variables and the
target variable. In the present work, we employ three ML feature
importance measures: Permutation Feature Importance PFI (Breiman,
2001), Shapley Additive explanations feature importance
SHAP (Shapley, 1952; Lundberg and Lee, 2017); and derivative-based
importance measure κALE (Cappelli, 2023).

PFI is the most well-known importance measure in ML. It assesses a
feature as important based on the change in the predictive ability of the
ML model after that a feature has been randomly permuted.

SHAP is a feature importance measure that relies on the notion of
Shapley value (Shapley, 1952). Such a method assigns the importance
based on the average absolute contribution of each feature in calculating
the predicted value for all data observations.

The third importance measure is defined using the ALE-plot design
(Apley and Zhu, 2020). ALE-plots are powerful visualization tools that
provide insights into the relationship between a feature and the pre-
dicted outcome of an ML model. Cappelli (2023) proposes a derivative-
based importance measure κALE that quantifies the impact of small
changes of a specific feature in the ML model response on average.

Table 1 summarizes feature importance measures used in this work
while a detailed description is available in Section S4 of the Supple-
mentary material.
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Equations and references of three feature importance measures applied in this
work.
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