In this paper, a feedback control law is proposed to solve the asymptotic tracking problem for a ball bouncing in a triangular billiard. This controller is designed by firstly transforming the billiard table into a surface on which the ball moves without experiencing any impact, i.e. by reflecting the billiard table rather than the ball trajectory and designing a position feedback controller based on such an unfolded billiard table. Furthermore, it is shown how such an infinite-billiard table can be mapped to the surface of a torus, thus leading to bounded trajectories of the ball.

Menini, L., Possieri, C., Tornambe', A. (2022). Trajectory tracking of a bouncing ball in a triangular billiard by unfolding and folding the billiard table. INTERNATIONAL JOURNAL OF CONTROL, 95(10), 2642-2655 [10.1080/00207179.2021.1923807].

Trajectory tracking of a bouncing ball in a triangular billiard by unfolding and folding the billiard table

Menini L.;Possieri C.;Tornambe' A.
2022-01-01

Abstract

In this paper, a feedback control law is proposed to solve the asymptotic tracking problem for a ball bouncing in a triangular billiard. This controller is designed by firstly transforming the billiard table into a surface on which the ball moves without experiencing any impact, i.e. by reflecting the billiard table rather than the ball trajectory and designing a position feedback controller based on such an unfolded billiard table. Furthermore, it is shown how such an infinite-billiard table can be mapped to the surface of a torus, thus leading to bounded trajectories of the ball.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/04 - AUTOMATICA
English
Billiards
feedback stabilisation
non-smooth impacts
trajectory tracking
Menini, L., Possieri, C., Tornambe', A. (2022). Trajectory tracking of a bouncing ball in a triangular billiard by unfolding and folding the billiard table. INTERNATIONAL JOURNAL OF CONTROL, 95(10), 2642-2655 [10.1080/00207179.2021.1923807].
Menini, L; Possieri, C; Tornambe', A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/294472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 5
social impact