Several applications in different engineering areas require the computation of the Euclidean distance, a quite complex operation based on squaring and square root. In some applications, the Euclidean distance can be replaced by the Manhattan distance. However, the approximation error introduced by the Manhattan distance may be rather large, especially in a multi-dimensional space, and may compromise the overall performance. In this brief, we propose an extension of the αMax+βMin method to approximate the Euclidean distance to a multi-dimensional space. Such a method results in a much smaller approximation error with respect to the Manhattan approximation at the expense of a reasonable increase in hardware cost. Moreover, with respect to the Euclidean distance, the αMax+βMin method provides a significant reduction in the hardware if the application can tolerate some errors.

Cardarilli, G.c., Di Nunzio, L., Fazzolari, R., Nannarelli, A., Re, M., Spano, S. (2020). N-dimensional approximation of Euclidean distance. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS, 67(3), 565-569 [10.1109/TCSII.2019.2919545].

N-dimensional approximation of Euclidean distance

Cardarilli G. C.
;
Di Nunzio L.
;
Fazzolari R.
;
Re M.;Spano S.
2020-01-01

Abstract

Several applications in different engineering areas require the computation of the Euclidean distance, a quite complex operation based on squaring and square root. In some applications, the Euclidean distance can be replaced by the Manhattan distance. However, the approximation error introduced by the Manhattan distance may be rather large, especially in a multi-dimensional space, and may compromise the overall performance. In this brief, we propose an extension of the αMax+βMin method to approximate the Euclidean distance to a multi-dimensional space. Such a method results in a much smaller approximation error with respect to the Manhattan approximation at the expense of a reasonable increase in hardware cost. Moreover, with respect to the Euclidean distance, the αMax+βMin method provides a significant reduction in the hardware if the application can tolerate some errors.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
Settore IINF-01/A - Elettronica
English
Cardarilli, G.c., Di Nunzio, L., Fazzolari, R., Nannarelli, A., Re, M., Spano, S. (2020). N-dimensional approximation of Euclidean distance. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS, 67(3), 565-569 [10.1109/TCSII.2019.2919545].
Cardarilli, Gc; Di Nunzio, L; Fazzolari, R; Nannarelli, A; Re, M; Spano, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
N_-Dimensional_Approximation_of_Euclidean_Distance.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 879.29 kB
Formato Adobe PDF
879.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/238317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 29
social impact