In [V. G. Drinfeld, "Quantum groups", Proc. Intern. Congress of Math. (Berkeley, 1986) 1987, pp. 798-820], Drinfeld constructs a Quantum Formal Series Hopf Algebra (QFSHA) U'_h starting from a Quantum Universal Enveloping Algebra (QUEA) U_h . In this paper, we prove that if (U_h,R) is any quasitriangular QUEA, then U'_h with the restriction of Ad(R) to its tensor square is a braided QFSHA. As a consequence, we prove that if g is a quasitriangular Lie bialgebra over a field k of characteristic zero and g^* is its dual Lie bialgebra, then the algebra of functions F[[g^*]] on the formal group associated to g^* is a braided Hopf algebra. This result is a consequence of the existence of a quasitriangular quantization (U_h,R) of U(g) and of the fact that U'_h is a quantization of F[[g^*]] .
Halbout, G., Gavarini, F. (2001). Tressages des groupes de Poisson formels à dual quasitriangulaire. JOURNAL OF PURE AND APPLIED ALGEBRA, 161(3), 295-307 [10.1016/S0022-4049(00)00099-2].
Tressages des groupes de Poisson formels à dual quasitriangulaire
GAVARINI, FABIO
2001-07-24
Abstract
In [V. G. Drinfeld, "Quantum groups", Proc. Intern. Congress of Math. (Berkeley, 1986) 1987, pp. 798-820], Drinfeld constructs a Quantum Formal Series Hopf Algebra (QFSHA) U'_h starting from a Quantum Universal Enveloping Algebra (QUEA) U_h . In this paper, we prove that if (U_h,R) is any quasitriangular QUEA, then U'_h with the restriction of Ad(R) to its tensor square is a braided QFSHA. As a consequence, we prove that if g is a quasitriangular Lie bialgebra over a field k of characteristic zero and g^* is its dual Lie bialgebra, then the algebra of functions F[[g^*]] on the formal group associated to g^* is a braided Hopf algebra. This result is a consequence of the existence of a quasitriangular quantization (U_h,R) of U(g) and of the fact that U'_h is a quantization of F[[g^*]] .File | Dimensione | Formato | |
---|---|---|---|
R-matrice-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
143.21 kB
Formato
Adobe PDF
|
143.21 kB | Adobe PDF | Visualizza/Apri |
R-matrice_ENG-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the *English translation* of the Authors' own post-print version
Licenza:
Non specificato
Dimensione
142.99 kB
Formato
Adobe PDF
|
142.99 kB | Adobe PDF | Visualizza/Apri |
R-matrice_STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza:
Copyright dell'editore
Dimensione
145.33 kB
Formato
Adobe PDF
|
145.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
277.54 kB
Formato
Adobe PDF
|
277.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
152.49 kB
Formato
Adobe PDF
|
152.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.