In [V. G. Drinfeld, "Quantum groups", Proc. Intern. Congress of Math. (Berkeley, 1986) 1987, pp. 798-820], Drinfeld constructs a Quantum Formal Series Hopf Algebra (QFSHA) U'_h starting from a Quantum Universal Enveloping Algebra (QUEA) U_h . In this paper, we prove that if (U_h,R) is any quasitriangular QUEA, then U'_h with the restriction of Ad(R) to its tensor square is a braided QFSHA. As a consequence, we prove that if g is a quasitriangular Lie bialgebra over a field k of characteristic zero and g^* is its dual Lie bialgebra, then the algebra of functions F[[g^*]] on the formal group associated to g^* is a braided Hopf algebra. This result is a consequence of the existence of a quasitriangular quantization (U_h,R) of U(g) and of the fact that U'_h is a quantization of F[[g^*]] .

Halbout, G., Gavarini, F. (2001). Tressages des groupes de Poisson formels à dual quasitriangulaire. JOURNAL OF PURE AND APPLIED ALGEBRA, 161(3), 295-307 [10.1016/S0022-4049(00)00099-2].

Tressages des groupes de Poisson formels à dual quasitriangulaire

GAVARINI, FABIO
2001-07-24

Abstract

In [V. G. Drinfeld, "Quantum groups", Proc. Intern. Congress of Math. (Berkeley, 1986) 1987, pp. 798-820], Drinfeld constructs a Quantum Formal Series Hopf Algebra (QFSHA) U'_h starting from a Quantum Universal Enveloping Algebra (QUEA) U_h . In this paper, we prove that if (U_h,R) is any quasitriangular QUEA, then U'_h with the restriction of Ad(R) to its tensor square is a braided QFSHA. As a consequence, we prove that if g is a quasitriangular Lie bialgebra over a field k of characteristic zero and g^* is its dual Lie bialgebra, then the algebra of functions F[[g^*]] on the formal group associated to g^* is a braided Hopf algebra. This result is a consequence of the existence of a quasitriangular quantization (U_h,R) of U(g) and of the fact that U'_h is a quantization of F[[g^*]] .
24-lug-2001
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
French
Con Impact Factor ISI
Quantum Groups; R-matrices; dual Poisson groups
There exists also an English version - unpublished, but posted on this very site along with the published version (in French) - of this paper.
http://www.sciencedirect.com/science/article/pii/S0022404900000992
Halbout, G., Gavarini, F. (2001). Tressages des groupes de Poisson formels à dual quasitriangulaire. JOURNAL OF PURE AND APPLIED ALGEBRA, 161(3), 295-307 [10.1016/S0022-4049(00)00099-2].
Halbout, G; Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
R-matrice-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 143.21 kB
Formato Adobe PDF
143.21 kB Adobe PDF Visualizza/Apri
R-matrice_ENG-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the *English translation* of the Authors' own post-print version
Licenza: Non specificato
Dimensione 142.99 kB
Formato Adobe PDF
142.99 kB Adobe PDF Visualizza/Apri
R-matrice_STA.pdf

solo utenti autorizzati

Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza: Copyright dell'editore
Dimensione 145.33 kB
Formato Adobe PDF
145.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 277.54 kB
Formato Adobe PDF
277.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 152.49 kB
Formato Adobe PDF
152.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/21075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact