English translation of "Tressages des groupes de Poisson formels à dual quasitriangulaire" Journal of Pure and Applied Algebra **161** (2001), 295–307 DOI: 10.1016/S0022-4049(00)00099-2

BRAIDINGS OF POISSON GROUPS WITH QUASITRIANGULAR DUAL

Fabio Gavarini † , Gilles Halbout ‡

[†]Università di Roma "Tor Vergata", Dipartimento di Matematica – Roma, ITALY [‡]Institut de Recherche Mathématique Avancée, ULP–CNRS – Strasbourg, FRANCE

ABSTRACT. Let \mathfrak{g} be a quasitriangular Lie bialgebra over a field k of characteristic zero, and let \mathfrak{g}^* be its dual Lie bialgebra. We prove that the formal Poisson group $F[[\mathfrak{g}^*]]$ is a braided Hopf algebra. More generally, we prove that if (U_h, R) is any quasitriangular QUEA, then $(U_h', Ad(R)|_{U_h'\otimes U_h'})$ — where U_h' is defined by Drinfeld — is a braided QFSHA. The first result is then just a consequence of the existence of a quasitriangular quantization (U_h, R) of $U(\mathfrak{g})$ and of the fact that U_h' is a quantization of $F[[\mathfrak{g}^*]]$.

Introduction

Let \mathfrak{g} be a Lie Lie bialgebra over a field k of characteristic zero; let \mathfrak{g}^* be the dual Lie bialgebra of \mathfrak{g} ; finally denote $F[[\mathfrak{g}^*]]$ the algebra of functions on the formal Poisson group associated to \mathfrak{g}^* . If \mathfrak{g} is quasitriangular, endowed with the r-matrix r, this gives \mathfrak{g} some additional properties. A question then rises: what new structure one obtains on the dual bialgebra \mathfrak{g}^* ? In this work we shall show that the topological Poisson Hopf algebra $F[[\mathfrak{g}^*]]$ is a braided Poisson algebra (we'll give the definition later on). This was already proved for $\mathfrak{g} = \mathfrak{sl}(2, k)$ by Reshetikhin (cf. [Re]), and generalised to the case where \mathfrak{g} is Kac-Moody of finite (cf. [G1]) or affine (cf. [G2]) type by the first author.

In order to prove the result, we shall use quantization of universal enveloping algebras. After Etingof-Kazhdan (cf. [EK]), each Lie bialgebra admits a quantization $U_h(\mathfrak{g})$, namely a topological Hopf algebra over k[[h]] whose specialisation at h = 0 is isomorphic to $U(\mathfrak{g})$ as a co-Poisson Hopf algebra; in addition, if \mathfrak{g} is quasitriangular and r is its r-matrix, then such a $U_h(\mathfrak{g})$ exists which is quasitriangular too, as a Hopf algebra, with au R-matrix $R_h (\in U_h(\mathfrak{g}) \otimes U_h(\mathfrak{g}))$ such that $R_h \equiv 1 + r h \mod h^2$ (where we have identified, as vector spaces, $U_h(\mathfrak{g}) \cong U(\mathfrak{g})[[h]]$).

Now, after Drinfel'd (*cf.* [Dr]), for any quantised universal enveloping algebra U one can define also a certain Hopf subalgebra U' such that, if the semiclassical limit of U is

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

¹⁹⁹¹ Mathematics Subject Classification: Primary 17B37, 81R50

[†] Partially supported by a fellowship of the Consiglio Nazionale delle Ricerche (Italy)

Published in Journal of Pure and Applied Algebra 161 (2001), 295-307.

 $U(\mathfrak{g})$ (with \mathfrak{g} a Lie bialgebra), then the semiclassical limit of U' is $F[[\mathfrak{g}^*]]$. In our case, when considering $U_h(\mathfrak{g})'$ one can observe that the *R*-matrix does not belong, a priori, to $U_h(\mathfrak{g})' \otimes U_h(\mathfrak{g})'$; nevertheless, we prove that its adjoint action $\mathfrak{R}_h := \operatorname{Ad}(R_h) : U_h(\mathfrak{g}) \otimes$ $U_h(\mathfrak{g}) \longrightarrow U_h(\mathfrak{g}) \otimes U_h(\mathfrak{g}), \ x \otimes y \mapsto R_h \cdot (x \otimes y) \cdot R_h^{-1}$, stabilises $U_h(\mathfrak{g})' \otimes U_h(\mathfrak{g})'$, hence it induces by specialisation an operator \mathfrak{R}_0 on $F[[\mathfrak{g}^*]] \otimes F[[\mathfrak{g}^*]]$. Finally, the properties which make R_h an *R*-matrix imply that \mathfrak{R}_h is a braiding operator, whence the same holds for \mathfrak{R}_0 : thus the pair $(F[[\mathfrak{g}^*]], \mathfrak{R}_0)$ is braided Poisson algebra.

ACKNOWLEDGEMENTS

The authors wish to thank M. Rosso and C. Kassel for several useful conversations.

\S 1. Recallings and definitions

1.1 The classical objects. Let k be a fixed field of characteristic zero. In the following k will be the ground field of all the objects — Lie algebras and bialgebras, Hopf algebras, etc. — which we'll introduce.

Following [CP], §1.3, we call Lie bialgebra a pair $(\mathfrak{g}, \delta_{\mathfrak{g}})$ where \mathfrak{g} is a Lie algebra and $\delta_{\mathfrak{g}}: \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ is a antisymmetric linear map — called Lie cobracket — such that its dual $\delta_{\mathfrak{g}}^*: \mathfrak{g}^* \otimes \mathfrak{g}^* \to \mathfrak{g}^*$ be Lie bracket and that δ_g itself be a 1-cocycle of \mathfrak{g} with values in $\mathfrak{g} \otimes \mathfrak{g}$. Then it happens that also \mathfrak{g}^* , the linear dual of \mathfrak{g} , is a Lie bialgebra on its own. Following [CP], §2.1.B, we call quasitriangular Lie bialgebra a pair (\mathfrak{g}, r) such that $r \in \mathfrak{g} \otimes \mathfrak{g}$ be a solution of the classical Yang-Baxter equation (CYBE) $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$ in $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ and \mathfrak{g} be a Lie bialgebra with respect to the cobracket $\delta = \delta_{\mathfrak{g}}$ defined by $\delta(x) = [x, r]$; the element r is then called r-matrix of \mathfrak{g} .

If \mathfrak{g} is a Lie algebra, its universal enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra; if, in addition, \mathfrak{g} is a Lie bialgebra, then $U(\mathfrak{g})$ is in fact a co-Poisson Hopf algebra (cf. [CP], §6.2.A).

Let \mathfrak{g} be any Lie algebra: then we call function algebra on the formal group associated to \mathfrak{g} , or simply formal group associated to \mathfrak{g} , the space $F[[\mathfrak{g}]] := U(\mathfrak{g})^*$ linear dual of $U(\mathfrak{g})$. As $U(\mathfrak{g})$ is a Hopf algebra, its dual $F[[\mathfrak{g}]]$ is on its own a formal Hopf algebra (following [Di], Ch. 1). Note that, if G is a connected algebraic group whose tangent Lie algebra is \mathfrak{g} , letting F[G] be the Hopf algebra of regular functions on G and letting \mathfrak{m}_e be the maximal ideal of F[G] of functions vanishing at the unit point $e \in G$, the formal Hopf algebra $F[[\mathfrak{g}]]$ is nothing but the \mathfrak{m}_e -adic completion of F[G] (cf. [On], Ch. I). When, in addition, \mathfrak{g} is a Lie bialgebra, $F[[\mathfrak{g}]]$ is in fact a formal Poisson Hopf algebra (cf. [CP], §6.2.A).

1.2 Braidings and quasitriangularity. Let H be a Hopf algebra in a tensor category (\mathcal{A}, \otimes) (cf. [CP], §5): H is called braided (cf. [Re], Définition 2) if there exists an algebra automorphism \mathfrak{R} of $H \otimes H$, called braiding operator of H, different from the flip $\sigma: H^{\otimes 2} \to H^{\otimes 2}$, $a \otimes b \mapsto b \otimes a$, and such that

$$\mathfrak{R} \circ \Delta = \Delta^{\mathrm{op}}$$

$$(\Delta \otimes id) \circ \mathfrak{R} = \mathfrak{R}_{13} \circ \mathfrak{R}_{23} \circ (\Delta \otimes id) , \qquad (id \otimes \Delta) \circ \mathfrak{R} = \mathfrak{R}_{13} \circ \mathfrak{R}_{12} \circ (id \otimes \Delta)$$

where Δ^{op} is the opposite comultiplication, i. e. $\Delta^{\text{op}}(a) = \sigma \circ \Delta(a)$, and \mathfrak{R}_{12} , \mathfrak{R}_{13} , and \mathfrak{R}_{23} are the automorphisms of $H \otimes H \otimes H$ defined by $\mathfrak{R}_{12} = \mathfrak{R} \otimes id$, $\mathfrak{R}_{23} = id \otimes \mathfrak{R}$, $\mathfrak{R}_{13} = (\sigma \otimes id) \circ (id \otimes \mathfrak{R}) \circ (\sigma \otimes id)$.

Finally, when H is, in addition, a Poisson Hopf algebra, we'll say that it is braided — as a Poisson Hopf algebra — if it is braided — as a Hopf algebra — by a braiding which is also an automorphism of Poisson algebra.

If the pair (H, \mathfrak{R}) is a braided algebra, it follows from the definition that \mathfrak{R} satisfies the quantum Yang-Baxter equation — QYBE in the sequel — in $End(H^{\otimes 3})$, that is

$$\mathfrak{R}_{12}\circ\mathfrak{R}_{13}\circ\mathfrak{R}_{23}=\mathfrak{R}_{23}\circ\mathfrak{R}_{13}\circ\mathfrak{R}_{12}$$

which implies that, for all $n \in \mathbb{N}$ the braid group \mathcal{B}_n acts on $H^{\otimes n}$, from which one can also obtain some knot invariants, according to the recipe given in [CP], §15.12.

A Hopf algebra H (in a tensor category) is said to be quasitriangular (cf. [Dr], [CP]) if there exists an invertible element $R \in H \otimes H$, called the *R*-matrix of *H*, such that

$$R \cdot \Delta(a) \cdot R^{-1} = \operatorname{Ad}(R)(\Delta(a)) = \Delta^{\operatorname{op}}(a)$$
$$(\Delta \otimes id)(R) = R_{13}R_{23} , \qquad (id \otimes \Delta)(R) = R_{13}R_{12}$$

where $R_{12}, R_{13}, R_{23} \in H^{\otimes 3}$, $R_{12} = R \otimes 1$, $R_{23} = 1 \otimes R$, $R_{13} = (\sigma \otimes id)(R_{23}) = (id \otimes \sigma)(R_{12})$. Then it follows from the identities above that R satisfies the QYBE in $H^{\otimes 3}$

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

Thus, the tensor products of H-modules are endowed with an action of the braid group. Moreover, it is clear that if (H, R) is quasitriangular, then (H, Ad(R)) is braided.

1.3 The quantum objects. Let \mathcal{A} be the category whose objets are the k[[h]]-modules which are topologically frees and complete in h-adic sense, and the morphisms are the k[[h]]-linear continuous maps. For all V, W in \mathcal{A} , we define $V \otimes W$ to be the projective limit of the $k[[h]]/(h^n)$ -modules $(V/h^n V) \otimes_{k[[h]]/(h^n)} (W/h^n W)$: this makes \mathcal{A} into a tensor category (see [CP] for further details). After Drinfel'd (cf. [Dr]), we call quantised universal enveloping algebra — QUEA in the sequel — any Hopf algebra in the category \mathcal{A} whose semiclassical limit (= specialisation at h = 0) is the universal enveloping algebra of a Lie bialgebra. Similarly, we call quantised formal series Hopf algebra — QFSHA in the sequel — any Hopf algebra in the category \mathcal{A} whose semiclassical limit is the function algebra of a formal group.

In the sequel, we shall need the following result:

Theorem 1.4. (cf. [EK]) Let \mathfrak{g} be a Lie bialgebra. Then there exists a QUEA $U_h(\mathfrak{g})$ whose semiclassical limit is isomorphic to $U(\mathfrak{g})$; furthermore, there exists an isomorphism of k[[h]]-modules $U_h(\mathfrak{g}) \cong U(\mathfrak{g})[[h]]$.

In addition, if \mathfrak{g} is quasitriangular, with r-matrix r, then there exists a QUEA $U_h(\mathfrak{g})$ as above and an element $R_h \in U_h(\mathfrak{g}) \otimes U_h(\mathfrak{g})$ such that $(U_h(\mathfrak{g}), R_h)$ be a quasitriangular Hopf algebra and $R_h = 1 + rh + O(h^2)$ (with $O(h^2) \in h^2 \cdot H \otimes H$). \Box

1.5 The Drinfeld's functor. Let H be a Hopf algebra over k[[h]]. For all $n \in \mathbb{N}$, define $\Delta^n : H \longrightarrow H^{\otimes n}$ by $\Delta^0 := \epsilon$, $\Delta^1 := id_H$, and $\Delta^n := (\Delta \otimes id_H^{\otimes (n-2)}) \circ \Delta^{n-1}$ if n > 2. For all ordered subset $\Sigma = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$ with $i_1 < \cdots < i_k$, define the homomorphism $j_{\Sigma} : H^{\otimes k} \longrightarrow H^{\otimes n}$ by $j_{\Sigma}(a_1 \otimes \cdots \otimes a_k) := b_1 \otimes \cdots \otimes b_n$ with $b_i := 1$ if $i \notin \Sigma$ and $b_{i_m} := a_m$ for $1 \leq m \leq k$; then set $\Delta_{\Sigma} := j_{\Sigma} \circ \Delta^k$. Finally, define

 $\delta_n : H \longrightarrow H^{\otimes n}$ by $\delta_n := \sum_{\Sigma \subseteq \{1, \dots, n\}} (-1)^{n-|\Sigma|} \Delta_{\Sigma}$, for all $n \in \mathbb{N}_+$. More in general, for all $\Sigma = \{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$, with $i_1 < \dots < i_k$, define

$$\delta_{\Sigma} := \sum_{\Sigma' \subseteq \Sigma} \left(-1 \right)^{|\Sigma| - |\Sigma'|} \Delta_{\Sigma'} ; \qquad (1.1)$$

(in particular, $\delta_{\{1,...,n\}} = \delta_n$). Thanks to the inclusion-exclusion principle, this is equivalent to

$$\Delta_{\Sigma} = \sum_{\Sigma' \subseteq \Sigma} \delta_{\Sigma'} \tag{1.2}$$

for all $\Sigma = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$ with $i_1 < \cdots < i_k$. Finally, define

$$H' := \left\{ a \in H \, \middle| \, \delta_n(a) \in h^n H^{\otimes n} \right\},\,$$

a subspace of H which we consider endowed with the induced topology. Then we have

Theorem 1.6. (cf. [Dr], §7, ou [G3]) Let H be a Hopf algebra in the category \mathcal{A} . Then H' is a QFSHA. Moreover, if $H = U_h(\mathfrak{g})$ is a QUEA, with $U(\mathfrak{g})$ as semiclassical limit, then the semiclassical limit of $U_h(\mathfrak{g})'$ is $F[[\mathfrak{g}^*]]$. \Box

\S 2. The main results

From the technical point of view, the main result of this paper concerns the general framework of quasitriangular Hopf algebras:

Theorem 2.1. Let H be a quasitriangular Hopf algebra in the category \mathcal{A} , and let R be its R-matrix. Then, the inner automorphism $\operatorname{Ad}(R)$: $H \otimes H \to H \otimes H$ restricts to an automorphism of $H' \otimes H'$, and the pair $(H', \operatorname{Ad}(R)|_{H' \otimes H'})$ is a braided Hopf algebra in the category \mathcal{A} . \Box

The proof of this theorem will be given in section 3. Nevertheless, we can already get out of it as a consequence the main result announced by the title and in the introduction, which gives us a geometrical interpretation of the classical r-matrix:

Theorem 2.2. Let \mathfrak{g} be a quasitriangular Lie bialgebra. Then the topological Poisson Hopf algebra $F[[\mathfrak{g}^*]]$ is braided. Moreover, there exists a quantisation of $F[[\mathfrak{g}^*]]$ which is a braided Hopf algebra whose braiding operator specialises into that of $F[[\mathfrak{g}^*]]$.

Proof. Let r be the r-matrix of \mathfrak{g} . By Theorem 1.4, there exists a quasitriangular QUEA $(U_h(\mathfrak{g}), R_h)$ whose semiclassical limit is exactly $(U(\mathfrak{g}), r)$: that is, $U_h(\mathfrak{g})/h U_h(\mathfrak{g}) \cong U(\mathfrak{g})$ and $(R-1)/h \equiv r \mod h U_h(\mathfrak{g})^{\otimes 2}$; and by Theorem 1.6, the semiclassical limit of $U_h(\mathfrak{g})'$ is $F[[\mathfrak{g}^*]]$. Let $\mathfrak{R}_h := \operatorname{Ad}(R_h)$: then Theorem 2.1 ensures that $(U_h(\mathfrak{g})', \mathfrak{R}_h|_{U_h(\mathfrak{g})' \otimes U_h(\mathfrak{g})'})$ is a braided Hopf algebra, hence its semiclassical limit $(F[[\mathfrak{g}^*]], (\mathfrak{R}_h|_{U_h(\mathfrak{g})' \otimes U_h(\mathfrak{g})'})|_{h=0})$

is braided as well. Furthermore, as \mathfrak{R}_h is an algebra automorphism and the Poisson bracket of $F[[\mathfrak{g}^*]]$ is given by $\{a, b\} = ([\alpha, \beta]/h)|_{h=0}$ for all $a, b \in F[[\mathfrak{g}^*]]$ and $\alpha, \beta \in U_h(\mathfrak{g})'$ such that $\alpha|_{h=0} = a$, $\beta|_{h=0} = b$, we have that $(\mathfrak{R}_h|_{U_h(\mathfrak{g})'\otimes U_h(\mathfrak{g})'})|_{h=0}$ is also an automorphism of Poisson algebra. \Box

The theorem above gives a geometrical interpretation of the r-matrix of a quasitriangular Lie bialgebra. This very result had been proved for $\mathfrak{g} = \mathfrak{sl}(2, k)$ by Reshetikhin (cf. [Re]), and generalised to the case when \mathfrak{g} is Kac-Moody of finite type (cf. [G1], where a more precise analysis is carried on) or affine type (cf. [G2]) by the first author.

Theorem 2.2 has also an important consequence. Let \mathfrak{g} and \mathfrak{g}^* be as above, let \mathfrak{R} be the braiding of $F[[\mathfrak{g}^*]]$, and let \mathfrak{e} be the (unique) maximal ideal of $F[[\mathfrak{g}^* \oplus \mathfrak{g}^*]] = F[[\mathfrak{g}^*]] \otimes F[[\mathfrak{g}^*]]$ (topological tensor product, following [Di], Ch. 1). Now, \mathfrak{R} is an algebra automorphism, hence $\mathfrak{R}(\mathfrak{e}) = \mathfrak{e}$, and \mathfrak{R} induces an automorphism of vector space $\overline{\mathfrak{R}}: \mathfrak{e}/\mathfrak{e}^2 \to \mathfrak{e}/\mathfrak{e}^2$; in addition, $\mathfrak{e}/\mathfrak{e}^2 \cong \mathfrak{g} \oplus \mathfrak{g}$, and since \mathfrak{R} is also an automorphism of Poisson algebra, one has that $\overline{\mathfrak{R}}$ is a Lie algebra automorphism of $\mathfrak{g} \oplus \mathfrak{g} = \mathfrak{e}/\mathfrak{e}^2$; the other properties of the braiding \mathfrak{R} make so that $\overline{\mathfrak{R}}$ have other corresponding properties. Finally, the dual $\overline{\mathfrak{R}}^*: \mathfrak{g}^* \oplus \mathfrak{g}^* \to \mathfrak{g}^* \oplus \mathfrak{g}^*$ is a Lie coalgebra automorphism of $\mathfrak{g}^* \oplus \mathfrak{g}^*$, enjoying many other properties dual of those of $\overline{\mathfrak{R}}$. In particular, $\mathfrak{R}, \overline{\mathfrak{R}}$ and $\overline{\mathfrak{R}}^*$ are solutions of the QYBE, whence there is an action of the braid group \mathcal{B}_n on $F[[\mathfrak{g}^* \oplus \mathfrak{g}^*]]^{\otimes n}$, on $(\mathfrak{g} \oplus \mathfrak{g})^{\otimes n}$, and on $(\mathfrak{g}^* \oplus \mathfrak{g}^*)^{\otimes n}$ $(n \in \mathbb{N})$, and from that one can obtain knot invariants (following [CP], §15.12). Now, such automorphisms of $\mathfrak{g} \oplus \mathfrak{g}$ and of $\mathfrak{g}^* \oplus \mathfrak{g}^*$ have been introduced in [WX], §9, related to the so-called "global R-matrix", which also yields a geometrical interpretation of the classical r-matrix: comparing our results with those of [WX], as well as the functoriality properties of our construction, will be the matter of a forthcoming article.

\S 3. Proof of theorem 2.1

In this section (H, R) will be a quasitriangular Hopf algebra as in the statement of Theorem 2.1. We want to study the adjoint action of R on $H \otimes H$, where the latter is endowed with ite natural structure of Hopf algebra; we denote by $\tilde{\Delta}$ its coproduct, defined by $\tilde{\Delta} := s_{23} \circ (\Delta \otimes id_H \otimes id_H) \circ (id_H \otimes \Delta)$ where s_{23} denotes the flip in the positions 2 and 3. We'll denote also $I := 1 \otimes 1$ the unit in $H \otimes H$. After our definition of tensor product in \mathcal{A} , we have $(H \otimes H)' = H' \otimes H'$. Our goal is to show that, although R do not necessarily belong to $(H \otimes H)'$, its adjoint action $a \mapsto R \cdot a \cdot R^{-1}$ leaves stable $(H \otimes H)' = H' \otimes H'$. First of all set, for $\Sigma = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, always with $i_1 < \cdots < i_k$,

 $R_{\Sigma} := R_{2i_1-1,2i_k} R_{2i_1-1,2i_{k-1}} \cdots R_{2i_1-1,2i_1} R_{2i_2-1,2i_k} \cdots R_{2i_{k-1}-1,2i_k} R_{2i_k-1,2i_1} \cdots R_{2i_k-1,2i_1}$ (product of k^2 terms) where $R_{i,j} := j_{\{i,j\}}(R)$, defining $j_{\{r,s\}} \colon H \otimes H \longrightarrow H^{\otimes 2n}$ as before. We shall always write $|\Sigma|$ for the cardinality of Σ (here $|\Sigma| = k$).

Lemma 3.1. In $(H \otimes H)^{\otimes n}$, for all $\Sigma \subseteq \{1, \ldots, n\}$, we have: $\tilde{\Delta}_{\Sigma}(R) = R_{\Sigma}$. *Proof.* With no loss of generality, we'll prove the result for $\Sigma = \{1, \ldots, n\}$, i.e. $\tilde{\Delta}_{\{1,\ldots,n\}}(R) = R_{\{1,\ldots,n\}} = R_{1,2n} \cdot R_{1,2n-2} \cdots R_{1,2} \cdot R_{3,2n} \cdots R_{2n-3,2} \cdot R_{2n-1,2n} \cdots R_{2n-1,2}$. The result is evident at rank n = 1. Assume it be true at rank n, and prove it at rank n + 1; by definition of $\tilde{\Delta}$ and by the properties of the *R*-matrix we have

$$\begin{split} \tilde{\Delta}_{\{1,\dots,n+1\}}(R) &= \left(\tilde{\Delta} \otimes id_{H\otimes H}^{\otimes n-1}\right) \left(\tilde{\Delta}_{\{1,\dots,n\}}(R)\right) = \left(\tilde{\Delta} \otimes id_{H\otimes H}^{\otimes n-1}\right) \left(R_{\{1,\dots,n\}}\right) \\ &= s_{23} \left(\Delta \otimes id_{H}^{\otimes 2n}\right) \left(id_{H} \otimes \Delta \otimes id_{H}^{\otimes (2n-2)}\right) \left(R_{1,2n} \cdots R_{1,2} \cdots R_{3,2} \cdots R_{2n-1,2}\right) \\ &= s_{23} \left(\Delta \otimes id_{H}^{\otimes 2n}\right) \left(R_{1,2n+1} \cdots R_{1,3}R_{1,2} \cdots R_{4,3}R_{4,2} \cdots R_{2n,3}R_{2n,2}\right) = \\ &= s_{23} \left(R_{1,2n+2}R_{2,2n+2} \cdots R_{1,4}R_{2,4}R_{1,3}R_{2,3} \cdots R_{5,4}R_{5,3} \cdots R_{2n+1,4}R_{2n+1,3}\right) \\ &= R_{1,2n+2}R_{3,2n+2} \cdots R_{1,4}R_{3,4} \cdot R_{1,2}R_{3,2} \cdots R_{5,4} \cdot R_{5,2} \cdots R_{2n+1,4}R_{2n+1,2} \\ &= R_{1,2n+2} \cdots R_{1,4}R_{1,2}R_{3,2n+2} \cdots R_{3,4}R_{3,2} \cdots R_{5,4}R_{5,2} \cdots R_{2n+1,4}R_{2n+1,2} \\ &= R_{\{1,\dots,n+1\}}, \quad \text{q.e.d.} \quad \Box \end{split}$$

From now on we shall use the notation $C_b^a := {b \choose a}$ for all $a, b \in \mathbb{N}$.

Lemma 3.2. For all $a \in (H \otimes H)'$, and for all set Σ such that $|\Sigma| > i$, we have

$$\tilde{\Delta}_{\Sigma}(a) = \sum_{\Sigma' \subseteq \Sigma, \ |\Sigma'| \le i} (-1)^{i-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{i-|\Sigma'|} \tilde{\Delta}_{\Sigma'}(a) + O(h^{i+1}).$$

Proof. It is enough to prove the claim for $\Sigma = \{1, \ldots, n\}$, with n > i. Due to (1.2), we have

$$\begin{split} \tilde{\Delta}_{\{1,...,n\}}(a) &= \sum_{\bar{\Sigma} \subseteq \{1,...,n\}} \delta_{\bar{\Sigma}}(a) = \sum_{\bar{\Sigma} \subseteq \{1,...,n\}, \ |\bar{\Sigma}| \leq i} \delta_{\bar{\Sigma}}(a) + O(h^{i+1}) \\ &= \sum_{\bar{\Sigma} \subseteq \{1,...,n\}, \ |\bar{\Sigma}| \leq i} \sum_{\Sigma' \subseteq \bar{\Sigma}} (-1)^{|\bar{\Sigma}| - |\Sigma'|} \tilde{\Delta}_{\Sigma'}(a) + O(h^{i+1}) \\ &= \sum_{\Sigma' \subseteq \{1,...,n\}, \ |\Sigma'| \leq i} \tilde{\Delta}_{\Sigma'}(a) \sum_{\Sigma' \subseteq \bar{\Sigma}, \ |\bar{\Sigma}| \leq i} (-1)^{|\bar{\Sigma}| - |\Sigma'|} + O(h^{i+1}) \\ &= \sum_{\Sigma' \subseteq \{1,...,n\}, \ |\Sigma'| \leq i} \tilde{\Delta}_{\Sigma'}(a) (-1)^{i - |\Sigma'|} C_{n-1-|\Sigma'|}^{i-|\Sigma'|} + O(h^{i+1}), \ \text{q.e.d.} \quad \Box \end{split}$$

Before going on with the main result, we need still another minor technical fact about the binomial coefficients: one can easily prove it using the formal series expansion of $(1-X)^{-(r+1)}$, namely $(1-X)^{-(r+1)} = \sum_{k=0}^{\infty} C_{k+r}^r X^k$.

Lemma 3.3. Let $r, s, t \in \mathbb{N}$ be such that r < t. Then we have the following relations (where we set $C_u^v := 0$ if v > u):

(a)
$$\sum_{d=0}^{t} (-1)^{d} C_{d-1}^{r} C_{t}^{d} = -(-1)^{r}$$
, (b) $\sum_{d=0}^{t} (-1)^{d} C_{d+s}^{r} C_{t}^{d} = 0$. \Box

Finally, here is the main result of this section:

Proposition 3.4. For all $a \in (H \otimes H)'$, we have $R a R^{-1} \in (H \otimes H)'$.

Proof. As we have to show that $R a R^{-1}$ belongs to $(H \otimes H)'$, we have to consider the terms $\delta_n (R a R^{-1})$, $n \in \mathbb{N}$. For this we go and re-write $\delta_{\{1,...,n\}} (R a R^{-1})$ by using Lemma 3.1 and the fact that $\tilde{\Delta}$ and more in general $\tilde{\Delta}_{\{i_1,...,i_k\}}$, for $k \leq n$, are algebra morphisms; then $\delta_{\{1,...,n\}} (R a R^{-1}) = \sum_{\Sigma \subseteq \{1,...,n\}} (-1)^{n-|\Sigma|} R_{\Sigma} \tilde{\Delta}_{\Sigma}(a) R_{\Sigma}^{-1}$.

We shall prove by induction on i that

$$\delta_{\{1,...,n\}} \left(R \, a \, R^{-1} \right) = O(h^{i+1}) \quad \text{for all} \quad 0 \le i \le n-1 \,. \tag{(\star)}$$

In other words, we'll see that all the terms of the expansion truncated at the order n-1 are zero, hence $\delta_n \left(R \, a \, R^{-1} \right) = O(h^n)$, whence our claim.

For i = 0, we have, for each Σ : $\tilde{\Delta}_{\Sigma}(a) = \epsilon(a)I^{\otimes n} + O(h)$ and $R_{\Sigma} = I^{\otimes n} + O(h)$, and similarly $R_{\Sigma}^{-1} = I^{\otimes n} + O(h)$, whence $\delta_{\{1,\dots,n\}} \left(R \, a \, R^{-1}\right) = \sum_{k=1}^{n} C_{n}^{k} (-1)^{n-k} \epsilon(a) I^{\otimes n} + O(h) = O(h)$, thus the result (*) is true for i = 0.

Let's assume the result (*) proved for all i' < i. Write the *h*-adic expansions of R_{Σ} and R_{Σ}^{-1} in the form $R_{\Sigma} = \sum_{\ell=0}^{\infty} R_{\Sigma}^{(\ell)} h^{\ell}$ and $R_{\Sigma}^{-1} = \sum_{m=0}^{\infty} R_{\Sigma}^{(-m)} h^{m}$. By the previous proposition, we have an approximation of $\tilde{\Delta}_{\Sigma}(a)$ at the order j

$$\tilde{\Delta}_{\Sigma}(a) = \sum_{\Sigma' \subseteq \Sigma, \ |\Sigma'| \le j} (-1)^{j - |\Sigma'|} C_{|\Sigma| - 1 - |\Sigma'|}^{j - |\Sigma'|} \tilde{\Delta}_{\Sigma'}(a) + O(h^{j+1}) .$$

Then we have the following approximation of $\delta_{\{1,\ldots,n\}}$ $(R \, a \, R^{-1})$:

$$\begin{split} \delta_{\{1,\dots,n\}} \left(R \, a \, R^{-1} \right) &= \sum_{\Sigma \subseteq \{1,\dots,n\}} \sum_{\ell+m \leq i} (-1)^{n-|\Sigma|} R_{\Sigma}^{(\ell)} \, \tilde{\Delta}_{\Sigma}(a) \, R_{\Sigma}^{(-m)} \, h^{\ell+m} + O\left(h^{i+1}\right) = \\ &= \sum_{j=0}^{i} \sum_{\ell+m=i-j} \left(\sum_{\substack{\Sigma \subseteq \{1,\dots,n\} \\ |\Sigma| > j}} \sum_{\substack{\Sigma' \subseteq \Sigma \\ |\Sigma'| \leq j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} R_{\Sigma}^{(\ell)} \, \tilde{\Delta}_{\Sigma'}(a) \, R_{\Sigma}^{(-m)} + \\ &+ \sum_{\substack{\Sigma \subseteq \{1,\dots,n\} \\ |\Sigma| \leq j}} (-1)^{n-|\Sigma|} R_{\Sigma}^{(\ell)} \, \tilde{\Delta}_{\Sigma}(a) \, R_{\Sigma}^{(-m)} \right) h^{\ell+m} + O\left(h^{i+1}\right) = \\ &= \sum_{j=0}^{i} \sum_{\ell+m+j=i} \sum_{\substack{\Sigma' \subseteq \{1,\dots,n\} \\ |\Sigma'| \leq j}} \left(\sum_{\substack{\Sigma \subseteq \{1,\dots,n\} \\ \Sigma' \subseteq \Sigma, \ |\Sigma| > j}} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma'}(a) \, R_{\Sigma}^{(-m)} + \\ &+ (-1)^{n-|\Sigma'|} R_{\Sigma'}^{(\ell)} \, \tilde{\Delta}_{\Sigma'}(a) \, R_{\Sigma'}^{(-m)} \right) h^{\ell+m} + O\left(h^{i+1}\right) . \end{split}$$

We denote (E) the last expression in brackets, and we'll show that this expression is zero, whence $\delta_n (R a R^{-1}) = O(h^{i+1})$.

Let's look first at the terms corresponding to $\ell + m = 0$, that is j = i. Then we find back $\delta_{\{1,\ldots,n\}}(a)$, which is in $O(h^{i+1})$ by assumption. Therefore, by now on in the sequel of the computation we assume $\ell + m > 0$.

Consider first how the terms $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ act on $(H \otimes H)^{\prime \otimes n}$ (respectively on the left and on the right) for $\ell + m$ fixed (and positive), say $\ell + m = S$.

Taking the truncated expansion of each $R_{i,j}$ which occurs in R_{Σ} , we see that $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ are sums of products of at most ℓ and m terms respectively, each one acting on at most two tensor of $(H \otimes H)'^{\otimes n}$. We re-write $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma'}(a) R_{\Sigma}^{(-m)}$ by gathering together the terms of the sum which act on the same factors of $(H \otimes H)'^{\otimes n}$: we'll denote the set of positions of this factors by Σ'' .

Now, if i belongs to Σ'' , in the identification $(H \otimes H)^{\otimes n} = H^{\otimes 2n}$ (such as we chose it to define R_{Σ}) the index i corresponds to the pair (2i-1,2i); but then R_{Σ} and R_{Σ}^{-1} , and then also each $R_{\Sigma}^{(\ell)}$ and each $R_{\Sigma}^{(-m)}$, may act non-trivially on the i-th factor of $\tilde{\Delta}_{\Sigma'}(a)$ only if one of 2i-1 and 2i (or even both of them) occurs in the explicit written expression of R_{Σ} (in $H^{\otimes 2n}$), hence only if $i \in \Sigma$: thus $\Sigma'' \subseteq \Sigma$. Then we set $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma'}(a) R_{\Sigma}^{(-m)} =$

$$\sum_{\Sigma''\subseteq\Sigma} A^{(S)}_{\Sigma',\Sigma,\Sigma''}(a).$$

=

Now consider $\bar{\Sigma} \supseteq \Sigma$. From the very definition we have $R_{\bar{\Sigma}} = R_{\Sigma} + \mathcal{A}$, where \mathcal{A} is a sum of terms which contain factors $R_{2i-1,2j}^{(s)}$ with $\{i, j\} \not\subseteq \Sigma$: to see this, it is enough to expand every factor $R_{a,b}$ in $R_{\bar{\Sigma}}$ as $R_{a,b} = 1^{\otimes 2n} + O(h)$. Similarly, we have also $R_{\bar{\Sigma}}^{(\ell)} = R_{\Sigma}^{(\ell)} + \mathcal{A}'$, and similarly $R_{\bar{\Sigma}}^{(-m)} = R_{\Sigma}^{(-m)} + \mathcal{A}''$. This implies that $A_{\Sigma'',\bar{\Sigma},\Sigma'}^{(S)}(a) = A_{\Sigma'',\Sigma,\Sigma'}^{(S)}(a)$, and so the $A_{\Sigma'',\Sigma,\Sigma'}^{(S)}(a)$ do not depend on Σ ; then we write

$$\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \, \tilde{\Delta}_{\Sigma'}(a) \, R_{\Sigma}^{(-m)} = \sum_{\Sigma'' \subseteq \Sigma} A_{\Sigma',\Sigma''}^{(S)}(a) \, .$$

In the sequel we re-write (E) using the $A_{\Sigma',\Sigma''}^{(S)}(a)$. In the following we'll denote by $\delta_{\Sigma''\subset\Sigma'}$ the function whose value is 1 if $\Sigma''\subseteq\Sigma'$ and 0 if not.

Then we obtain a new expression for $\delta_{\{1,\ldots,n\}}(R \, a \, R^{-1})$, namely

$$\begin{split} \delta_{\{1,...,n\}} \big(R \, a \, R^{-1} \big) &= \sum_{j=0}^{i-1} \sum_{\substack{\Sigma' \subseteq \{1,...,n\} \\ |\Sigma'| \leq j}} \left(\sum_{\substack{\Sigma \subseteq \{1,...,n\} \\ \Sigma' \subseteq \Sigma, |\Sigma| > j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} \times \\ &\times \sum_{\substack{\Sigma'' \subseteq \Sigma \\ \Sigma'' \subseteq \Sigma}} A_{\Sigma',\Sigma''}^{(i-j)}(a) + (-1)^{n-|\Sigma'|} \sum_{\substack{\Sigma'' \subseteq \Sigma' \\ \Sigma'' \subseteq \Sigma'}} A_{\Sigma',\Sigma''}^{(i-j)}(a) \right) h^{i-j} + O(h^{i+1}) = \\ &= \sum_{j=0}^{i-1} \sum_{\substack{\Sigma' \subseteq \{1,...,n\} \\ |\Sigma'| \leq j}} h^{i-j} \sum_{\substack{\Sigma'' \subseteq \{1,...,n\} \\ \Sigma'' \subseteq \Sigma, \sum'' \subseteq \Sigma, |\Sigma| > j}} A_{\Sigma',\Sigma''}^{(i-j)}(a) \times \\ &\times \left(\sum_{\substack{\Sigma \subseteq \{1,...,n\} \\ \Sigma' \subseteq \Sigma, \sum'' \subseteq \Sigma, |\Sigma| > j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} + (-1)^{n-|\Sigma'|} \delta_{\Sigma'' \subseteq \Sigma'} \right) + O(h^{i+1}) . \end{split}$$

We denote $(E')_{\Sigma',\Sigma''}$ the new expression in brackets; in other words, for fixed Σ' and Σ'' , with $|\Sigma'| \leq j$, we set

$$(E')_{\Sigma',\Sigma''} := \sum_{\substack{\Sigma \subseteq \{1,\dots,n\}\\\Sigma' \subseteq \Sigma, \ \Sigma'' \subseteq \Sigma, \ |\Sigma| > j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} + (-1)^{n-|\Sigma'|} \delta_{\Sigma'' \subseteq \Sigma}$$

(by the way, we remark that this is a purely combinatorial expression); we shall show that this expression is zero when Σ' and Σ'' are such that $|\Sigma' \cup \Sigma''| \leq j - i + |\Sigma'|$ and $|\Sigma'| \leq j$. In force of the following lemma, this will be enough to prove Proposition 3.4.

Lemma 3.5.

(a) We have j < i and $i \le n-1$, hence $j \le n-2$. (b) For all S > 0, in the expression $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma'}(a) R_{\Sigma}^{(-m)} = \sum_{\Sigma'' \subseteq \Sigma} A_{\Sigma',\Sigma''}^{(S)}(a)$

we have that $A_{\Sigma',\Sigma''}^{(S)}(a) = 0$ for all Σ', Σ'' such that $\left|\Sigma' \cup \Sigma''\right| > S + \left|\Sigma'\right|$.

Proof. The first part of the statement is trivial; to prove the second, we study the adjoint action of R_{Σ} on $(H \otimes H)^{\otimes n}$.

First of all, on $k \cdot I^{\otimes n}$ the action of these elements gives a zero term because one gets the term at the order S of the *h*-adic expansion of $R_{\Sigma} \cdot R_{\Sigma}^{-1} = 1$ (for S > 0).

Second, let us consider $\Sigma \subseteq \{1, \ldots, n\}$, and let us study the action on $(H \otimes H)_{\Sigma'} := j_{\Sigma'} \left((H \otimes H)^{\otimes |\Sigma|} \right) (\subseteq (H \otimes H)^{\otimes n})$. We know that R_{Σ} is a product of $|\Sigma|^2$ terms of type $R_{a,b}$, with $a, b \in \{2i-1, 2j \mid i, j \in \Sigma\}$; so let's analyse what happens when one computes the product $P := R_{\Sigma} \cdot x \cdot R_{\Sigma}^{-1}$ if $x \in (H \otimes H)_{\Sigma}$.

Consider the rightmost factor $R_{a,b}$: if $a, b \notin \{2j-1, 2j \mid j \in \Sigma'\}$, then when computing P one gets $P := R_{\Sigma} x R_{\Sigma}^{-1} = R_{\star} R_{a,b} x R_{a,b}^{-1} R_{\star}^{-1} = R_{\star} x R_{\star}^{-1}$ (where $R_{\star} := R_{\Sigma} R_{a,b}^{-1}$). Similarly, moving further on from right to left along R_{Σ} one can discard all factors $R_{c,d}$ of this type, namely those such that $c, d \notin \{2j-1, 2j \mid j \in \Sigma'\}$. Thus the first factor whose adjoint action is non-trivial will be necessarily of type $R_{\bar{a},\bar{b}}$ with one of the two indices belonging to $\{2j-1, 2j \mid j \in \Sigma'\}$, say for instance \bar{a} . Notice that the new index $\bar{a} \ (\in \{1, 2, \ldots, 2n-1, 2n\})$ — which "marks" a tensor factor in $H^{\otimes 2n}$ — corresponds to a new index $j_{\bar{a}} \ (\in \{1, \ldots, n\})$ — marking a tensor factor of $(H \otimes H)^{\otimes n}$. So for the following factors — i.e. on the left of $R_{\bar{a},\bar{b}}$ — one has to repeat the same analysis, but with the set $\{2j-1, 2j \mid j \in \Sigma' \cup \{j_{\bar{a}}\}\}$ instead of $\{2j-1, 2j \mid j \in \Sigma'\}$; therefore, as $R_{\bar{a},\bar{b}}$ might act in non-trivial way on at most $|\Sigma'|$ factors of $(H \otimes H)^{\otimes n}$, similarly the factor which is the closest on its left may act in a non-trivial way on at most $|\Sigma'| + 1$ factors. The upset is that the adjoint action of R_{Σ} is non-trivial on at most $|\Sigma'| + |\Sigma|$ factors of $(H \otimes H)^{\otimes n}$.

Now consider the different terms $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$, with $\ell + m = S$, and study the products $R_{\Sigma}^{(\ell)} \cdot x \cdot R_{\Sigma}^{(-m)}$, with $x \in (H \otimes H)_{\Sigma}$. We already know that $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ are sums of products, denoted P_{+} and P_{-} , of at most ℓ and m terms respectively, of type $R_{i,j}^{(\pm k)}$; the terms $A_{\Sigma',\Sigma''}^{(S)}(a)$ then are nothing but sums of terms of type $P_{+}\tilde{\Delta}_{\Sigma'}(a) P_{-}$,

where in addition the products P_+ and P_- have their "positions" in Σ'' . Now, since each P_+ and each P_- is a product of at most ℓ and m factors $R_{i,j}^{(\pm k)}$, one can refine the previous argument. Consider only the term at the order S of the h-adic expansion of $P := R_{\Sigma} x R_{\Sigma}^{-1} = R_{\star} R_{a,b} x R_{a,b}^{-1} R_{\star}^{-1} = R_{\star} x R_{\star}^{-1}$: whenever there are factors of type $R_{a,b}^{(k)}$ or $R_{a,b}^{(t)}$, for fixed a, b — not belonging to $\{2j - 1, 2j \mid j \in \Sigma'\}$ — which appear in $R_{\Sigma}^{(\ell)}$ or $R_{\Sigma}^{(-m)}$, for some ℓ or m, the total contribution of all these terms in the sum $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} x R_{\Sigma}^{(-m)}$ will be zero (this follows from the fact that $R_{\star} R_{a,b} x R_{a,b}^{-1} R_{\star}^{-1} =$ $R_{\star} x R_{\star}^{-1}$). In addition, since now we are dealing only with S factors in total, we conclude that $A_{\Sigma',\Sigma''}^{(S)}(a) = 0$ if $|\Sigma' \cup \Sigma''| > S + |\Sigma'|$. \Box

Now we shall compute $(E')_{\Sigma',\Sigma''}$. Thanks to the previous remark, we can limit ourselves to consider the pairs (Σ',Σ'') such that $|\Sigma'\cup\Sigma''| \leq i-j+m+|\Sigma'| \leq i-j+j=i \leq n-1$. Then one can always find at least two $\Sigma \subseteq \{1,\ldots,n\}$ such that $|\Sigma| > j$ and $\Sigma'\cup\Sigma'' \subseteq \Sigma$, which make us sure that there will always be at least two terms in the calculation which is to follow (such a condition will guarantee the vanishing of the expression $(E')_{\Sigma',\Sigma''}$). We distinguish three cases:

(I) If $\Sigma'' \subseteq \Sigma'$, then the expression $(E')_{\Sigma',\Sigma''}$ becomes

$$(E':1)_{\Sigma',\Sigma''} = \sum_{\substack{\Sigma \subseteq \{1,\dots,n\}\\\Sigma' \subseteq \Sigma, \ |\Sigma| > j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} + (-1)^{n-|\Sigma'|} .$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$(E':1)_{\Sigma',\Sigma''} = \sum_{d=j+1}^{n} (-1)^{n-d} (-1)^{j-|\Sigma'|} C_{d-1-|\Sigma'|}^{j-|\Sigma'|} C_{n-|\Sigma'|}^{d-|\Sigma'|} + (-1)^{n-|\Sigma'|} .$$

Now, this last expression is zero by Lemma 3.3, for it corresponds to a sum of type $\sum_{k=r+1}^{t} (-1)^{t+r-k} C_{k-1}^{r} C_{t}^{k} + (-1)^{t} = \sum_{k=0}^{t} (-1)^{t+r-k} C_{k-1}^{r} C_{t}^{k} + (-1)^{t} \quad (\text{where } C_{u}^{v} := 0 \text{ if } v > u \text{) with } r, t \in \mathbb{N}_{+} \text{ and } r < t \text{ : in our case we set } t = n - |\Sigma'|, r = j - |\Sigma'| \text{ and } k = d - |\Sigma'|; \text{ one verifies that one has just } j - |\Sigma'| < n - |\Sigma'| \text{ because } j < n.$

(II) If $\Sigma'' \not\subseteq \Sigma'$ and $|\Sigma' \cup \Sigma''| > j$, then the expression $(E')_{\Sigma',\Sigma''}$ becomes

$$\left(E':2 \right)_{\Sigma',\Sigma''} = \sum_{\substack{\Sigma \subseteq \{1,\dots,n\}\\\Sigma' \cup \Sigma'' \subseteq \Sigma}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma'|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma'|} .$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$(E':2)_{\Sigma',\Sigma''} = \sum_{d=|\Sigma'\cup\Sigma''|}^{n} (-1)^{n-d} (-1)^{j-|\Sigma'|} C_{d-1-|\Sigma'|}^{j-|\Sigma'|} C_{n-|\Sigma'\cup\Sigma''|}^{d-|\Sigma'\cup\Sigma''|}$$

Again, the last expression is zero thanks to Lemma 3.3, for it corresponds to a sum of type $\sum_{k=0}^{t} (-1)^{t+r-k} C_{k+s}^r C_t^k$ with $r, t, s \in \mathbb{N}_+$ and r < t: in our case we set

 $t = n - |\Sigma' \cup \Sigma''|, \ r = j - |\Sigma'|, \ s = |\Sigma' \cup \Sigma''| - |\Sigma'| - 1 \text{ and } k = d - |\Sigma' \cup \Sigma''|; \text{ then one verifies that } j - |\Sigma'| < n - |\Sigma'| \text{ for } j < n \text{ and } |\Sigma' \cup \Sigma''| - |\Sigma'| - 1 \ge 0 \text{ since } \Sigma'' \not\subseteq \Sigma'.$ (III) If $\Sigma'' \not\subseteq \Sigma'$ and $|\Sigma' \cup \Sigma''| \le j$, then the expression $(E')_{-1} = 0$ becomes

$$(E':3) = \sum_{\substack{(-1)^{n-|\Sigma|} \\ (-1)^{j-|\Sigma'|}} (-1)^{j-|\Sigma'|} C^{j-|\Sigma'|}_{j-|\Sigma'|}$$

$$(E':3)_{\Sigma',\Sigma''} = \sum_{\substack{\Sigma \subseteq \{1,\dots,n\}\\\Sigma' \cup \Sigma'' \subseteq \Sigma, \ |\Sigma| > j}} (-1)^{n-|\Sigma|} (-1)^{j-|\Sigma|} C_{|\Sigma|-1-|\Sigma'|}^{j-|\Sigma|}$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$(E':3)_{\Sigma',\Sigma''} = \sum_{d=j+1}^{n} (-1)^{n-d} (-1)^{j-|\Sigma'|} C_{d-1-|\Sigma'|}^{j-|\Sigma'|} C_{n-|\Sigma'\cup\Sigma''|}^{d-|\Sigma'\cup\Sigma''|}$$

But again the last expression is zero because of Lemma 3.3, for it corresponds to a sum of type $\sum_{k=j+1-|\Sigma'\cup\Sigma''|}^{t} (-1)^{t+r-k} C_{k+s}^r C_t^k = \sum_{k=0}^{t} (-1)^{t+r-k} C_{k+s}^r C_t^k \quad (\text{where } C_u^v := 0 \text{ if } v > u) \text{ with } r, t, s \in \mathbb{N}_+ \text{ and } r < t \text{ : here again we set } t = n - |\Sigma' \cup \Sigma''|, r = j - |\Sigma'|, s = |\Sigma' \cup \Sigma''| - |\Sigma'| - 1 \text{ and } k = d - |\Sigma' \cup \Sigma''|; \text{ one has, always for the same reasons, } j - |\Sigma'| < n - |\Sigma'| \text{ and } |\Sigma' \cup \Sigma''| - |\Sigma'| - 1 \ge 0.$

Therefore, one has always $(E')_{\Sigma',\Sigma''} = 0$, whence (E) = 0, which ends the proof. \Box

References

- [CP] V. Chari, A. Pressley, A guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
- [Di] J. Dixmier, Introduction to the theory of formal groups, Pure and Applied Mathematics **20** (1973).
- [Dr] V. G. Drinfel'd, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986), 1987, pp. 798– 820.
- [EK] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math. (New Series) 2 (1996), 1–41.
- [G1] F. Gavarini, Geometrical Meaning of R-matrix action for Quantum groups at Roots of 1, Commun. Math. Phys. 184 (1997), 95–117.
- [G2] F. Gavarini, The *R*-matrix action of untwisted affine quantum groups at roots of 1 (to appear in Jour. Pure Appl. Algebra).
- [G3] F. Gavarini, The quantum duality principle, Preprint.
- [On] A. L. Onishchik (Ed.), Lie Groups and Lie Algebras I, Encyclopaedia of Mathematical Sciences 20 (1993).
- [Re] N. Reshetikhin, Quasitriangularity of quantum groups at roots of 1, Commun. Math. Phys. 170 (1995), 79–99.
- [WX] A. Weinstein, P. Xu, Classical Solutions of the Quantum Yang-Baxter Equation, Commun. Math. Phys. 148 (1992), 309–343.

[†] Università degli Studi di Roma "Tor Vergata" — Dipartimento di Matematica Via della Ricerca Scientifica, 1 — I-00133 Roma, ITALY — e-mail: gavarini@mat.uniroma2.it

[‡] Institut de Recherche Mathématique Avancée — e-mail: halbout@math.u-strasbg.fr 7, rue René Descartes — 67084 STRASBOURG Cedex, FRANCE