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† Università di Roma “Tor Vergata”, Dipartimento di Matematica – Roma, ITALY
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Abstract. Let g be a quasitriangular Lie bialgebra over a field k of characteristic zero, and
let g∗ be its dual Lie bialgebra. We prove that the formal Poisson group F [[g∗]] is a braided
Hopf algebra. More generally, we prove that if

(
Uh, R

)
is any quasitriangular QUEA, then(

Uh
′, Ad(R)

∣∣
Uh

′⊗Uh
′

)
— where Uh

′ is defined by Drinfeld — is a braided QFSHA. The first

result is then just a consequence of the existence of a quasitriangular quantization (Uh, R) of
U(g) and of the fact that Uh

′ is a quantization of F [[g∗]].

Introduction

Let g be a Lie Lie bialgebra over a field k of characteristic zero; let g∗ be the dual Lie
bialgebra of g; finally denote F [[g∗]] the algebra of functions on the formal Poisson group
associated to g∗ . If g is quasitriangular, endowed with the r–matrix r, this gives g some
additional properties. A question then rises: what new structure one obtains on the dual
bialgebra g∗ ? In this work we shall show that the topological Poisson Hopf algebra F [[g∗]]
is a braided Poisson algebra (we’ll give the definition later on). This was already proved for
g = sl(2, k) by Reshetikhin (cf. [Re]), and generalised to the case where g is Kac-Moody
of finite (cf. [G1]) or affine (cf. [G2]) type by the first author.

In order to prove the result, we shall use quantization of universal enveloping algebras.
After Etingof-Kazhdan (cf. [EK]), each Lie bialgebra admits a quantization Uh(g), namely
a topological Hopf algebra over k[[h]] whose specialisation at h = 0 is isomorphic to U(g)
as a co-Poisson Hopf algebra; in addition, if g is quasitriangular and r is its r–matrix,
then such a Uh(g) exists which is quasitriangular too, as a Hopf algebra, with au R–matrix
Rh (∈ Uh(g) ⊗ Uh(g) ) such that Rh ≡ 1 + r h mod h2 (where we have identified, as
vector spaces, Uh(g) ∼= U(g)[[h]] ).

Now, after Drinfel’d (cf. [Dr]), for any quantised universal enveloping algebra U one
can define also a certain Hopf subalgebra U ′ such that, if the semiclassical limit of U is
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U(g) (with g a Lie bialgebra), then the semiclassical limit of U ′ is F [[g∗]]. In our case,
when considering Uh(g)

′
one can observe that the R–matrix does not belong, a priori, to

Uh(g)
′ ⊗ Uh(g)

′
; nevertheless, we prove that its adjoint action Rh := Ad(Rh) : Uh(g) ⊗

Uh(g) −−→ Uh(g)⊗ Uh(g) , x⊗ y 7→ Rh · (x⊗ y) ·R−1
h , stabilises Uh(g)

′ ⊗ Uh(g)
′
, hence

it induces by specialisation an operator R0 on F [[g∗]] ⊗ F [[g∗]] . Finally, the properties
which make Rh an R–matrix imply that Rh is a braiding operator, whence the same holds
for R0 : thus the pair

(
F [[g∗]],R0

)
is braided Poisson algebra.
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§ 1. Recallings and definitions

1.1 The classical objects. Let k be a fixed field of characteristic zero. In the following
k will be the ground field of all the objects — Lie algebras and bialgebras, Hopf algebras,
etc. — which we’ll introduce.

Following [CP], §1.3, we call Lie bialgebra a pair (g, δg) where g is a Lie algebra and
δg : g → g⊗ g is a antisymmetric linear map — called Lie cobracket — such that its dual
δ∗g : g

∗ ⊗ g∗ → g∗ be Lie bracket and that δg itself be a 1-cocycle of g with values in g⊗ g.
Then it happens that also g∗, the linear dual of g, is a Lie bialgebra on its own. Following
[CP], §2.1.B, we call quasitriangular Lie bialgebra a pair (g, r) such that r ∈ g ⊗ g be a
solution of the classical Yang-Baxter equation (CYBE) [r12, r13]+ [r12, r23]+ [r13, r23] = 0
in g ⊗ g ⊗ g and g be a Lie bialgebra with respect to the cobracket δ = δg defined by
δ(x) = [x, r] ; the element r is then called r–matrix of g.

If g is a Lie algebra, its universal enveloping algebra U(g) is a Hopf algebra; if, in
addition, g is a Lie bialgebra, then U(g) is in fact a co-Poisson Hopf algebra (cf. [CP],
§6.2.A).

Let g be any Lie algebra: then we call function algebra on the formal group associated to
g, or simply formal group associated to g, the space F [[g]] := U(g)

∗
linear dual of U(g).

As U(g) is a Hopf algebra, its dual F [[g]] is on its own a formal Hopf algebra (following
[Di], Ch. 1). Note that, if G is a connected algebraic group whose tangent Lie algebra is g,
letting F [G] be the Hopf algebra of regular functions on G and letting me be the maximal
ideal of F [G] of functions vanishing at the unit point e ∈ G , the formal Hopf algebra
F [[g]] is nothing but the me–adic completion of F [G] (cf. [On], Ch. I). When, in addition,
g is a Lie bialgebra, F [[g]] is in fact a formal Poisson Hopf algebra (cf. [CP], §6.2.A).

1.2 Braidings and quasitriangularity. Let H be a Hopf algebra in a tensor category
(A,⊗) (cf. [CP], §5): H is called braided (cf. [Re], Définition 2) if there exists an algebra
automorphismR ofH⊗H, called braiding operator ofH, different from the flip σ: H⊗2 →
H⊗2 , a⊗ b 7→ b⊗ a , and such that

R ◦∆ = ∆op

(∆⊗ id) ◦R = R13 ◦R23 ◦ (∆⊗ id) , (id⊗∆) ◦R = R13 ◦R12 ◦ (id⊗∆)

where ∆op is the opposite comultiplication, i. e. ∆op(a) = σ ◦∆(a) , and R12, R13, and
R23 are the automorphisms of H ⊗ H ⊗ H defined by R12 = R ⊗ id , R23 = id ⊗ R ,
R13 = (σ ⊗ id) ◦ (id⊗R) ◦ (σ ⊗ id) .
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Finally, when H is, in addition, a Poisson Hopf algebra, we’ll say that it is braided —
as a Poisson Hopf algebra — if it is braided — as a Hopf algebra — by a braiding which
is also an automorphism of Poisson algebra.

If the pair (H,R) is a braided algebra, it follows from the definition that R satisfies the
quantum Yang-Baxter equation — QYBE in the sequel — in End(H⊗3), that is

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12

which implies that, for all n ∈ N the braid group Bn acts on H⊗n, from which one can
also obtain some knot invariants, according to the recipe given in [CP], §15.12.

A Hopf algebra H (in a tensor category) is said to be quasitriangular (cf. [Dr], [CP]) if
there exists an invertible element R ∈ H ⊗H , called the R–matrix of H, such that

R ·∆(a) ·R−1 = Ad(R)(∆(a)) = ∆op(a)

(∆⊗ id)(R) = R13R23 , (id⊗∆)(R) = R13R12

where R12, R13, R23 ∈ H⊗3, R12 = R ⊗ 1 , R23 = 1 ⊗ R , R13 = (σ ⊗ id)(R23) =
(id⊗σ)(R12) . Then it follows from the identities above that R satisfies the QYBE in H⊗3

R12R13R23 = R23R13R12 .

Thus, the tensor products of H–modules are endowed with an action of the braid group.
Moreover, it is clear that if (H,R) is quasitriangular, then

(
H,Ad(R)

)
is braided.

1.3 The quantum objects. Let A be the category whose objets are the k[[h]]–modules
which are topologically frees and complete in h–adic sense, and the morphisms are the
k[[h]]–linear continuous maps. For all V , W in A, we define V ⊗W to be the projective
limit of the k[[h]]

/
(hn)–modules

(
V/hnV

)
⊗

k[[h]]
/
(hn)

(
W/hnW

)
: this makes A into a

tensor category (see [CP] for further details). After Drinfel’d (cf. [Dr]), we call quantised
universal enveloping algebra — QUEA in the sequel — any Hopf algebra in the category
A whose semiclassical limit (= specialisation at h = 0 ) is the universal enveloping algebra
of a Lie bialgebra. Similarly, we call quantised formal series Hopf algebra — QFSHA in
the sequel — any Hopf algebra in the category A whose semiclassical limit is the function
algebra of a formal group.

In the sequel, we shall need the following result:

Theorem 1.4. (cf. [EK]) Let g be a Lie bialgebra. Then there exists a QUEA Uh(g)
whose semiclassical limit is isomorphic to U(g) ; furthermore, there exists an isomorphism
of k[[h]]–modules Uh(g) ∼= U(g)[[h]] .

In addition, if g is quasitriangular, with r–matrix r, then there exists a QUEA Uh(g)
as above and an element Rh ∈ Uh(g)⊗ Uh(g) such that

(
Uh(g), Rh

)
be a quasitriangular

Hopf algebra and Rh = 1 + r h+O
(
h2
)
(with O

(
h2
)
∈ h2 ·H ⊗H ). �

1.5 The Drinfeld’s functor. Let H be a Hopf algebra over k[[h]]. For all n ∈ N,
define ∆n: H −→ H⊗n by ∆0 := ϵ, ∆1 := idH , and ∆n :=

(
∆ ⊗ id⊗(n−2)

H

)
◦ ∆n−1 if

n > 2. For all ordered subset Σ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define the
homomorphism jΣ: H

⊗k −→ H⊗n by jΣ(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn with bi := 1
if i /∈ Σ and bim := am for 1 ≤ m ≤ k ; then set ∆Σ := jΣ ◦ ∆k . Finally, define
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δn: H −→ H⊗n by δn :=
∑

Σ⊆{1,...,n} (−1)
n−|Σ|

∆Σ , for all n ∈ N+ . More in general,

for all Σ = {i1, . . . , ik} ⊆ {1, . . . , n} , with i1 < · · · < ik , define

δΣ :=
∑
Σ′⊆Σ

(−1)
|Σ|−|Σ′|

∆Σ′ ; (1.1)

(in particular, δ{1,...,n} = δn ). Thanks to the inclusion-exclusion principle, this is equiva-
lent to

∆Σ =
∑
Σ′⊆Σ

δΣ′ (1.2)

for all Σ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik . Finally, define

H ′ :=
{
a ∈ H

∣∣ δn(a) ∈ hnH⊗n
}
,

a subspace of H which we consider endowed with the induced topology. Then we have

Theorem 1.6. (cf. [Dr], §7, ou [G3]) Let H be a Hopf algebra in the category A. Then
H ′ is a QFSHA. Moreover, if H = Uh(g) is a QUEA, with U(g) as semiclassical limit,

then the semiclassical limit of Uh(g)
′
is F [[g∗]] . �

§ 2. The main results

From the technical point of view, the main result of this paper concerns the general
framework of quasitriangular Hopf algebras:

Theorem 2.1. Let H be a quasitriangular Hopf algebra in the category A, and let R be
its R–matrix. Then, the inner automorphism Ad(R): H ⊗ H → H ⊗ H restricts to an

automorphism of H ′ ⊗H ′, and the pair
(
H ′, Ad(R)

∣∣
H′⊗H′

)
is a braided Hopf algebra in

the category A. �
The proof of this theorem will be given in section 3. Nevertheless, we can already get

out of it as a consequence the main result announced by the title and in the introduction,
which gives us a geometrical interpretation of the classical r–matrix:

Theorem 2.2. Let g be a quasitriangular Lie bialgebra. Then the topological Poisson
Hopf algebra F [[g∗]] is braided. Moreover, there exists a quantisation of F [[g∗]] which is
a braided Hopf algebra whose braiding operator specialises into that of F [[g∗]].

Proof. Let r be the r–matrix of g. By Theorem 1.4, there exists a quasitriangular QUEA(
Uh(g), Rh

)
whose semiclassical limit is exactly

(
U(g), r

)
: that is, Uh(g)

/
hUh(g) ∼= U(g)

and (R−1)
/
h ≡ rmodhUh(g)

⊗2 ; and by Theorem 1.6, the semiclassical limit of Uh(g)
′ is

F [[g∗]]. Let Rh := Ad(Rh) : then Theorem 2.1 ensures that
(
Uh(g)

′
, Rh

∣∣
Uh(g)

′⊗Uh(g)
′

)
is a braided Hopf algebra, hence its semiclassical limit

(
F [[g∗]],

(
Rh

∣∣
Uh(g)

′⊗Uh(g)
′

) ∣∣∣
h=0

)
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is braided as well. Furthermore, asRh is an algebra automorphism and the Poisson bracket

of F [[g∗]] is given by {a, b} =
(
[α, β]

/
h
)∣∣

h=0
for all a, b ∈ F [[g∗]] and α, β ∈ Uh(g)

′
such

that α|h=0 = a , β|h=0 = b , we have that
(
Rh

∣∣
Uh(g)

′⊗Uh(g)
′

) ∣∣∣
h=0

is also an automorphism

of Poisson algebra. �

The theorem above gives a geometrical interpretation of the r–matrix of a quasitrian-
gular Lie bialgebra. This very result had been proved for g = sl(2, k) by Reshetikhin
(cf. [Re]), and generalised to the case when g is Kac-Moody of finite type (cf. [G1], where
a more precise analysis is carried on) or affine type (cf. [G2]) by the first author.

Theorem 2.2 has also an important consequence. Let g and g∗ be as above, let R
be the braiding of F [[g∗]], and let e be the (unique) maximal ideal of F [[g∗ ⊕ g∗]] =
F [[g∗]] ⊗ F [[g∗]] (topological tensor product, following [Di], Ch. 1). Now, R is an alge-
bra automorphism, hence R(e) = e , and R induces an automorphism of vector space
R: e

/
e2 → e

/
e2 ; in addition, e

/
e2 ∼= g⊕ g , and since R is also an automorphism of Pois-

son algebra, one has that R is a Lie algebra automorphism of g ⊕ g = e
/
e2 ; the other

properties of the braiding R make so that R have other corresponding properties. Finally,

the dual R
∗
: g∗ ⊕ g∗ → g∗ ⊕ g∗ is a Lie coalgebra automorphism of g∗ ⊕ g∗, enjoying

many other properties dual of those of R. In particular, R, R and R
∗
are solutions of the

QYBE, whence there is an action of the braid group Bn on F [[g∗ ⊕ g∗]]
⊗n

, on (g⊕ g)
⊗n

,

and on (g∗ ⊕ g∗)
⊗n

(n ∈ N), and from that one can obtain knot invariants (following [CP],
§15.12). Now, such automorphisms of g⊕g and of g∗⊕g∗ have been introduced in [WX],
§9, related to the so-called ”global R–matrix”, which also yields a geometrical interpreta-
tion of the classical r–matrix: comparing our results with those of [WX], as well as the
functoriality properties of our construction, will be the matter of a forthcoming article.

§ 3. Proof of theorem 2.1

In this section (H,R) will be a quasitriangular Hopf algebra as in the statement of
Theorem 2.1. We want to study the adjoint action of R on H ⊗ H, where the latter is
endowed with ite natural structure of Hopf algebra; we denote by ∆̃ its coproduct, defined
by ∆̃ := s23 ◦(∆⊗ idH ⊗ idH)◦(idH ⊗∆) where s23 denotes the flip in the positions 2 and
3. We’ll denote also I := 1⊗1 the unit in H⊗H. After our definition of tensor product in

A, we have
(
H ⊗H

)′
= H ′⊗H ′ . Our goal is to show that, although R do not necessarily

belong to
(
H ⊗H

)′
, its adjoint action a 7→ R ·a ·R−1 leaves stable

(
H ⊗H

)′
= H ′⊗H ′ .

First of all set, for Σ = {i1, . . . , ik} ⊆ {1, . . . , n} , always with i1 < · · · < ik ,

RΣ := R2i1−1,2ikR2i1−1,2ik−1
· · ·R2i1−1,2i1R2i2−1,2ik · · ·R2ik−1−1,2ikR2ik−1,2i1 · · ·R2ik−1,2i1

(product of k2 terms) where Ri,j := j{i,j}(R) , defining j{r,s}: H ⊗H −→ H⊗2n as before.
We shall always write |Σ| for the cardinality of Σ (here |Σ| = k ).

Lemma 3.1. In
(
H ⊗H

)⊗n
, for all Σ ⊆ {1, . . . , n}, we have: ∆̃Σ(R) = RΣ .

Proof. With no loss of generality, we’ll prove the result for Σ={1, . . . , n}, i.e.
∆̃{1,...,n}(R) = R{1,...,n} = R1,2n ·R1,2n−2 · · ·R1,2 ·R3,2n · · ·R2n−3,2 ·R2n−1,2n · · ·R2n−1,2 .
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The result is evident at rank n = 1 . Assume it be true at rank n , and prove it at rank
n+ 1 ; by definition of ∆̃ and by the properties of the R–matrix we have

∆̃{1,...,n+1}(R) =
(
∆̃⊗ idH⊗H

⊗n−1
)(

∆̃{1,...,n}(R)
)
=
(
∆̃⊗ idH⊗H

⊗n−1
)(

R{1,...,n}
)

= s23
(
∆⊗ id⊗2n

H

)(
idH ⊗∆⊗ id⊗(2n−2)

H

)
(R1,2n · · ·R1,2 · · ·R3,2 · · ·R2n−1,2)

= s23
(
∆⊗ id⊗2n

H

)
(R1,2n+1 · · ·R1,3R1,2 · · ·R4,3R4,2 · · ·R2n,3R2n,2) =

= s23(R1,2n+2R2,2n+2 · · ·R1,4R2,4R1,3R2,3 · · ·R5,4R5,3 · · ·R2n+1,4R2n+1,3)

= R1,2n+2R3,2n+2 · · ·R1,4R3,4 ·R1,2R3,2 · · ·R5,4 ·R5,2 · · ·R2n+1,4R2n+1,2

= R1,2n+2 · · ·R1,4R1,2R3,2n+2 · · ·R3,4R3,2 · · ·R5,4R5,2 · · ·R2n+1,4R2n+1,2

= R{1,...,n+1} , q.e.d. �

From now on we shall use the notation Ca
b :=

(
b
a

)
for all a, b ∈ N .

Lemma 3.2. For all a ∈
(
H ⊗H

)′
, and for all set Σ such that |Σ| > i , we have

∆̃Σ(a) =
∑

Σ′⊆Σ, |Σ′|≤i

(−1)
i−|Σ′|

C
i−|Σ′|
|Σ|−1−|Σ′| ∆̃Σ′(a) +O

(
hi+1

)
.

Proof. It is enough to prove the claim for Σ = {1, . . . , n}, with n > i . Due to (1.2), we
have

∆̃{1,...,n}(a) =
∑

Σ̄⊆{1,...,n}

δΣ̄(a) =
∑

Σ̄⊆{1,...,n}, |Σ̄|≤i

δΣ̄(a) +O
(
hi+1

)
=

∑
Σ̄⊆{1,...,n}, |Σ̄|≤i

∑
Σ′⊆Σ̄

(−1)
|Σ̄|−|Σ′|

∆̃Σ′(a) +O
(
hi+1

)
=

∑
Σ′⊆{1,...,n}, |Σ′|≤i

∆̃Σ′(a)
∑

Σ′⊆Σ̄, |Σ̄|≤i

(−1)
|Σ̄|−|Σ′|

+O
(
hi+1

)
=

∑
Σ′⊆{1,...,n}, |Σ′|≤i

∆̃Σ′(a) (−1)
i−|Σ′|

C
i−|Σ′|
n−1−|Σ′| +O

(
hi+1

)
, q.e.d. �

Before going on with the main result, we need still another minor technical fact about
the binomial coefficients: one can easily prove it using the formal series expansion of

(1−X)
−(r+1)

, namely (1−X)
−(r+1)

=
∞∑
k=0

Cr
k+rX

k .

Lemma 3.3. Let r, s, t ∈ N be such that r < t. Then we have the following relations
(where we set Cv

u := 0 if v > u ):

(a)
t∑

d=0

(−1)
d
Cr

d−1 C
d
t = −(−1)

r
, (b)

t∑
d=0

(−1)
d
Cr

d+s C
d
t = 0 . �

Finally, here is the main result of this section:
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Proposition 3.4. For all a ∈
(
H ⊗H

)′
, we have RaR−1 ∈

(
H ⊗H

)′
.

Proof. As we have to show that RaR−1 belongs to
(
H ⊗H

)′
, we have to consider the

terms δn
(
RaR−1

)
, n ∈ N . For this we go and re-write δ{1,...,n}

(
RaR−1

)
by using Lemma

3.1 and the fact that ∆̃ and more in general ∆̃{i1,...,ik}, for k ≤ n, are algebra morphisms;

then δ{1,...,n}
(
RaR−1

)
=

∑
Σ⊆{1,...,n}

(−1)
n−|Σ|

RΣ ∆̃Σ(a)R
−1
Σ .

We shall prove by induction on i that

δ{1,...,n}
(
RaR−1

)
= O

(
hi+1

)
for all 0 ≤ i ≤ n− 1 . (⋆)

In other words, we’ll see that all the terms of the expansion truncated at the order n− 1
are zero, hence δn

(
RaR−1

)
= O(hn) , whence our claim.

For i = 0 , we have, for each Σ : ∆̃Σ(a) = ϵ(a)I⊗n + O(h) and RΣ = I⊗n + O(h) ,

and similarly R−1
Σ = I⊗n +O(h) , whence δ{1,...,n}

(
RaR−1

)
=

n∑
k=1

Ck
n(−1)

n−k
ϵ(a) I⊗n+

+O(h) = O(h) , thus the result (⋆) is true for i = 0 .
Let’s assume the result (⋆) proved for all i′ < i . Write the h–adic expansions of RΣ

and R−1
Σ in the form RΣ =

∑∞
ℓ=0 R

(ℓ)
Σ hℓ and R−1

Σ =
∑∞

m=0 R
(−m)
Σ hm . By the previous

proposition, we have an approximation of ∆̃Σ(a) at the order j

∆̃Σ(a) =
∑

Σ′⊆Σ, |Σ′|≤j

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| ∆̃Σ′(a) +O

(
hj+1

)
.

Then we have the following approximation of δ{1,...,n}
(
RaR−1

)
:

δ{1,...,n}
(
RaR−1

)
=

∑
Σ⊆{1,...,n}

∑
ℓ+m≤i

(−1)
n−|Σ|

R
(ℓ)
Σ ∆̃Σ(a)R

(−m)
Σ hℓ+m +O

(
hi+1

)
=

=
i∑

j=0

∑
ℓ+m=i−j

( ∑
Σ⊆{1,...,n}

|Σ|>j

∑
Σ′⊆Σ
|Σ′|≤j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| R

(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ +

+
∑

Σ⊆{1,...,n}
|Σ|≤j

(−1)
n−|Σ|

R
(ℓ)
Σ ∆̃Σ(a)R

(−m)
Σ

)
hℓ+m +O

(
hi+1

)
=

=
i∑

j=0

∑
ℓ+m+j=i

∑
Σ′⊆{1,...,n}

|Σ′|≤j

( ∑
Σ⊆{1,...,n}
Σ′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| R

(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ +

+ (−1)
n−|Σ′|

R
(ℓ)
Σ′ ∆̃Σ′(a)R

(−m)
Σ′

)
hℓ+m +O

(
hi+1

)
.

We denote (E) the last expression in brackets, and we’ll show that this expression is
zero, whence δn

(
RaR−1

)
= O

(
hi+1

)
.

Let’s look first at the terms corresponding to ℓ +m = 0 , that is j = i . Then we find
back δ{1,...,n}(a), which is in O

(
hi+1

)
by assumption. Therefore, by now on in the sequel

of the computation we assume ℓ+m > 0 .
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Consider first how the terms R
(ℓ)
Σ and R

(−m)
Σ act on

(
H ⊗H

)′ ⊗n
(respectively on the

left and on the right) for ℓ+m fixed (and positive), say ℓ+m = S .

Taking the truncated expansion of each Ri,j which occurs in RΣ , we see that R
(ℓ)
Σ and

R
(−m)
Σ are sums of products of at most ℓ and m terms respectively, each one acting on

at most two tensor of
(
H ⊗H

)′ ⊗n
. We re-write

∑
ℓ+m=S

R
(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ by gathering

together the terms of the sum which act on the same factors of
(
H ⊗H

)′ ⊗n
: we’ll denote

the set of positions of this factors by Σ′′.
Now, if i belongs to Σ′′, in the identification (H ⊗H)

⊗n
= H⊗2n (such as we chose it to

define RΣ ) the index i corresponds to the pair (2i−1, 2i) ; but then RΣ and R−1
Σ , and then

also each R
(ℓ)
Σ and each R

(−m)
Σ , may act non-trivially on the i–th factor of ∆̃Σ′(a) only if

one of 2i−1 and 2i (or even both of them) occurs in the explicit written expression of RΣ

(in H⊗2n ), hence only if i ∈ Σ : thus Σ′′ ⊆ Σ . Then we set
∑

ℓ+m=S

R
(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ =∑

Σ′′⊆Σ

A
(S)
Σ′,Σ,Σ′′(a) .

Now consider Σ̄ ⊇ Σ . From the very definition we have RΣ̄ = RΣ+A , where A is a sum

of terms which contain factors R
(s)
2i−1,2j with {i, j} ̸⊆ Σ : to see this, it is enough to expand

every factor Ra,b in RΣ̄ as Ra,b = 1⊗2n+O(h) . Similarly, we have also R
(ℓ)

Σ̄
= R

(ℓ)
Σ +A′ ,

and similarly R
(−m)

Σ̄
= R

(−m)
Σ + A′′ . This implies that A

(S)

Σ′′,Σ̄,Σ′(a) = A
(S)
Σ′′,Σ,Σ′(a) , and

so the A
(S)
Σ′′,Σ,Σ′(a) do not depend on Σ ; then we write∑

ℓ+m=S

R
(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ =

∑
Σ′′⊆Σ

A
(S)
Σ′,Σ′′(a) .

In the sequel we re-write (E) using the A
(S)
Σ′,Σ′′(a). In the following we’ll denote by

δΣ′′⊆Σ′ the function whose value is 1 if Σ′′ ⊆ Σ′ and 0 if not.
Then we obtain a new expression for δ{1,...,n}

(
RaR−1

)
, namely

δ{1,...,n}
(
RaR−1

)
=

i−1∑
j=0

∑
Σ′⊆{1,...,n}

|Σ′|≤j

( ∑
Σ⊆{1,...,n}
Σ′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′|×

×
∑

Σ′′⊆Σ

A
(i−j)
Σ′,Σ′′(a) + (−1)

n−|Σ′| ∑
Σ′′⊆Σ′

A
(i−j)
Σ′,Σ′′(a)

)
hi−j +O

(
hi+1

)
=

=
i−1∑
j=0

∑
Σ′⊆{1,...,n}

|Σ′|≤j

hi−j
∑

Σ′′⊆{1,...,n}

A
(i−j)
Σ′,Σ′′(a)×

×

( ∑
Σ⊆{1,...,n}

Σ′⊆Σ, Σ′′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| + (−1)

n−|Σ′|
δΣ′′⊆Σ′

)
+O

(
hi+1

)
.
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We denote
(
E′)

Σ′,Σ′′ the new expression in brackets; in other words, for fixed Σ′ and

Σ′′, with
∣∣Σ′
∣∣ ≤ j , we set

(
E′)

Σ′,Σ′′ :=
∑

Σ⊆{1,...,n}
Σ′⊆Σ, Σ′′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| + (−1)

n−|Σ′|
δΣ′′⊆Σ′

(by the way, we remark that this is a purely combinatorial expression); we shall show that
this expression is zero when Σ′ and Σ′′ are such that

∣∣Σ′∪Σ′′
∣∣ ≤ j− i+

∣∣Σ′
∣∣ and ∣∣Σ′

∣∣ ≤ j .
In force of the following lemma, this will be enough to prove Proposition 3.4.

Lemma 3.5.
(a) We have j < i and i ≤ n− 1 , hence j ≤ n− 2 .

(b) For all S > 0 , in the expression
∑

ℓ+m=S

R
(ℓ)
Σ ∆̃Σ′(a)R

(−m)
Σ =

∑
Σ′′⊆Σ

A
(S)
Σ′,Σ′′(a)

we have that A
(S)
Σ′,Σ′′(a) = 0 for all Σ′, Σ′′ such that

∣∣Σ′ ∪ Σ′′
∣∣ > S +

∣∣Σ′
∣∣ .

Proof. The first part of the statement is trivial; to prove the second, we study the adjoint

action of RΣ on
(
H ⊗H

)⊗n
.

First of all, on k · I⊗n the action of these elements gives a zero term because one gets
the term at the order S of the h–adic expansion of RΣ ·R−1

Σ = 1 (for S > 0 ).

Second, let us consider Σ ⊆ {1, . . . , n} , and let us study the action on
(
H ⊗H)

Σ′ :=

jΣ′

((
H ⊗H

)⊗|Σ|
)
(⊆

(
H ⊗H

)⊗n
) . We know that RΣ is a product of |Σ|2 terms of type

Ra,b , with a, b ∈
{
2i−1, 2j

∣∣ i, j ∈ Σ
}
; so let’s analyse what happens when one computes

the product P := RΣ · x ·R−1
Σ if x ∈

(
H ⊗H)

Σ
.

Consider the rightmost factor Ra,b : if a, b ̸∈
{
2j−1, 2j

∣∣ j ∈ Σ′ } , then when computing

P one gets P := RΣ xR−1
Σ = R⋆ Ra,b xR

−1
a,b R−1

⋆ = R⋆ xR
−1
⋆ (where R⋆ := RΣ R−1

a,b ).
Similarly, moving further on from right to left along RΣ one can discard all factors Rc,d

of this type, namely those such that c, d ̸∈
{
2j − 1, 2j

∣∣ j ∈ Σ′ } . Thus the first factor
whose adjoint action is non-trivial will be necessarily of type Rā,b̄ with one of the two

indices belonging to
{
2j − 1, 2j

∣∣ j ∈ Σ′ } , say for instance ā. Notice that the new index

ā (∈ {1, 2, . . . , 2n − 1, 2n} ) — which ”marks” a tensor factor in H⊗2n — corresponds

to a new index jā (∈ {1, . . . , n} ) — marking a tensor factor of
(
H ⊗H

)⊗n
. So for the

following factors — i.e. on the left of Rā,b̄ — one has to repeat the same analysis, but with

the set
{
2j − 1, 2j

∣∣ j ∈ Σ′ ∪ {jā}
}

instead of
{
2j − 1, 2j

∣∣ j ∈ Σ′ } ; therefore, as Rā,b̄

might act in non-trivial way on at most
∣∣Σ′
∣∣ factors of

(
H ⊗H

)⊗n
, similarly the factor

which is the closest on its left may act in a non-trivial way on at most
∣∣Σ′
∣∣ + 1 factors.

The upset is that the adjoint action of RΣ is non-trivial on at most
∣∣Σ′
∣∣+ ∣∣Σ∣∣ factors of(

H ⊗H
)⊗n

.

Now consider the different terms R
(ℓ)
Σ and R

(−m)
Σ , with ℓ + m = S , and study the

products R
(ℓ)
Σ · x · R (−m)

Σ , with x ∈
(
H ⊗H)

Σ
. We already know that R

(ℓ)
Σ and R

(−m)
Σ

are sums of products, denoted P+ and P− , of at most ℓ and m terms respectively, of type

R
(±k)
i,j ; the terms A

(S)
Σ′,Σ′′(a) then are nothing but sums of terms of type P+ ∆̃Σ′(a)P− ,
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where in addition the products P+ and P− have their ”positions” in Σ′′. Now, since

each P+ and each P− is a product of at most ℓ and m factors R
(±k)
i,j , one can refine the

previous argument. Consider only the term at the order S of the h–adic expansion of
P := RΣ xR−1

Σ = R⋆ Ra,b xR
−1
a,b R−1

⋆ = R⋆ xR
−1
⋆ : whenever there are factors of type

R
(k)
a,b or R

(t)
a,b , for fixed a, b — not belonging to

{
2j − 1, 2j

∣∣ j ∈ Σ′ } — which appear

in R
(ℓ)
Σ or R

(−m)
Σ , for some ℓ or m, the total contribution of all these terms in the sum∑

ℓ+m=S

R
(ℓ)
Σ xR

(−m)
Σ will be zero (this follows from the fact that R⋆ Ra,b xR

−1
a,b R−1

⋆ =

R⋆ xR
−1
⋆ ). In addition, since now we are dealing only with S factors in total, we conclude

that A
(S)
Σ′,Σ′′(a) = 0 if

∣∣Σ′ ∪ Σ′′
∣∣ > S +

∣∣Σ′
∣∣ . �

Now we shall compute
(
E′)

Σ′,Σ′′ . Thanks to the previous remark, we can limit ourselves

to consider the pairs
(
Σ′,Σ′′) such that

∣∣Σ′∪Σ′′
∣∣ ≤ i−j+m+

∣∣Σ′
∣∣ ≤ i−j+j = i ≤ n−1 .

Then one can always find at least two Σ ⊆ {1, . . . , n} such that |Σ| > j and Σ′∪Σ′′ ⊆ Σ ,
which make us sure that there will always be at least two terms in the calculation which is
to follow (such a condition will guarantee the vanishing of the expression

(
E′)

Σ′,Σ′′ ). We

distinguish three cases:

(I) If Σ′′ ⊆ Σ′ , then the expression
(
E′)

Σ′,Σ′′ becomes(
E′ : 1

)
Σ′,Σ′′ =

∑
Σ⊆{1,...,n}
Σ′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| + (−1)

n−|Σ′|
.

Gathering together the Σ’s which share the same cardinality d, a simple computation gives(
E′ : 1

)
Σ′,Σ′′ =

n∑
d=j+1

(−1)
n−d

(−1)
j−|Σ′|

C
j−|Σ′|
d−1−|Σ′| C

d−|Σ′|
n−|Σ′| + (−1)

n−|Σ′|
.

Now, this last expression is zero by Lemma 3.3, for it corresponds to a sum of type
t∑

k=r+1

(−1)
t+r−k

Cr
k−1 C

k
t + (−1)

t
=

t∑
k=0

(−1)
t+r−k

Cr
k−1 C

k
t + (−1)

t
(where Cv

u := 0 if

v > u ) with r, t ∈ N+ and r < t : in our case we set t = n −
∣∣Σ′
∣∣ , r = j −

∣∣Σ′
∣∣ and

k = d−
∣∣Σ′
∣∣ ; one verifies that one has just j −

∣∣Σ′
∣∣ < n−

∣∣Σ′
∣∣ because j < n .

(II) If Σ′′ ̸⊆ Σ′ and
∣∣Σ′ ∪ Σ′′

∣∣ > j , then the expression
(
E′)

Σ′,Σ′′ becomes(
E′ : 2

)
Σ′,Σ′′ =

∑
Σ⊆{1,...,n}
Σ′∪Σ′′⊆Σ

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| .

Gathering together the Σ’s which share the same cardinality d, a simple computation gives(
E′ : 2

)
Σ′,Σ′′ =

n∑
d=|Σ′∪Σ′′|

(−1)
n−d

(−1)
j−|Σ′|

C
j−|Σ′|
d−1−|Σ′| C

d−|Σ′∪Σ′′|
n−|Σ′∪Σ′′| .

Again, the last expression is zero thanks to Lemma 3.3, for it corresponds to a sum of

type
t∑

k=0

(−1)
t+r−k

Cr
k+s C

k
t with r, t, s ∈ N+ and r < t : in our case we set
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t = n−
∣∣Σ′ ∪Σ′′

∣∣ , r = j−
∣∣Σ′
∣∣ , s =

∣∣Σ′ ∪Σ′′
∣∣− ∣∣Σ′

∣∣− 1 and k = d−
∣∣Σ′ ∪Σ′′

∣∣ ; then one

verifies that j −
∣∣Σ′
∣∣ < n−

∣∣Σ′
∣∣ for j < n and

∣∣Σ′ ∪ Σ′′
∣∣− ∣∣Σ′

∣∣− 1 ≥ 0 since Σ′′ ̸⊆ Σ′ .

(III) If Σ′′ ̸⊆ Σ′ and
∣∣Σ′ ∪ Σ′′

∣∣ ≤ j , then the expression
(
E′)

Σ′,Σ′′ becomes(
E′ : 3

)
Σ′,Σ′′ =

∑
Σ⊆{1,...,n}

Σ′∪Σ′′⊆Σ, |Σ|>j

(−1)
n−|Σ|

(−1)
j−|Σ′|

C
j−|Σ′|
|Σ|−1−|Σ′| .

Gathering together the Σ’s which share the same cardinality d, a simple computation gives(
E′ : 3

)
Σ′,Σ′′ =

n∑
d=j+1

(−1)
n−d

(−1)
j−|Σ′|

C
j−|Σ′|
d−1−|Σ′| C

d−|Σ′∪Σ′′|
n−|Σ′∪Σ′′| .

But again the last expression is zero because of Lemma 3.3, for it corresponds to a sum

of type
t∑

k=j+1−|Σ′∪Σ′′|
(−1)

t+r−k
Cr

k+s C
k
t =

t∑
k=0

(−1)
t+r−k

Cr
k+s C

k
t (where Cv

u := 0 if

v > u ) with r, t, s ∈ N+ and r < t : here again we set t = n−
∣∣Σ′ ∪ Σ′′

∣∣ , r = j −
∣∣Σ′
∣∣ ,

s =
∣∣Σ′ ∪ Σ′′

∣∣ − ∣∣Σ′
∣∣ − 1 and k = d −

∣∣Σ′ ∪ Σ′′
∣∣ ; one has, always for the same reasons,

j −
∣∣Σ′
∣∣ < n−

∣∣Σ′
∣∣ and

∣∣Σ′ ∪ Σ′′
∣∣− ∣∣Σ′

∣∣− 1 ≥ 0 .

Therefore, one has always
(
E′)

Σ′,Σ′′ = 0, whence (E) = 0 , which ends the proof. �
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