BRAIDINGS OF POISSON GROUPS WITH QUASITRIANGULAR DUAL

Fabio Gavarini †, Gilles Halbout ${ }^{\ddagger}$
† Università di Roma "Tor Vergata", Dipartimento di Matematica - Roma, ITALY
${ }^{\ddagger}$ Institut de Recherche Mathématique Avancée, ULP-CNRS - Strasbourg, FRANCE

Abstract

Let \mathfrak{g} be a quasitriangular Lie bialgebra over a field k of characteristic zero, and let \mathfrak{g}^{*} be its dual Lie bialgebra. We prove that the formal Poisson group $F\left[\left[\mathfrak{g}^{*}\right]\right]$ is a braided Hopf algebra. More generally, we prove that if $\left(U_{h}, R\right)$ is any quasitriangular QUEA, then $\left(U_{h}{ }^{\prime},\left.\operatorname{Ad}(R)\right|_{U_{h^{\prime}} \otimes U_{h^{\prime}}}\right)$ - where $U_{h}{ }^{\prime}$ is defined by Drinfeld - is a braided QFSHA. The first result is then just a consequence of the existence of a quasitriangular quantization $\left(U_{h}, R\right)$ of $U(\mathfrak{g})$ and of the fact that $U_{h}{ }^{\prime}$ is a quantization of $F\left[\left[\mathfrak{g}^{*}\right]\right]$.

Introduction

Let \mathfrak{g} be a Lie Lie bialgebra over a field k of characteristic zero; let \mathfrak{g}^{*} be the dual Lie bialgebra of \mathfrak{g}; finally denote $F\left[\left[\mathfrak{g}^{*}\right]\right]$ the algebra of functions on the formal Poisson group associated to \mathfrak{g}^{*}. If \mathfrak{g} is quasitriangular, endowed with the r-matrix r, this gives \mathfrak{g} some additional properties. A question then rises: what new structure one obtains on the dual bialgebra \mathfrak{g}^{*} ? In this work we shall show that the topological Poisson Hopf algebra $F\left[\left[\mathfrak{g}^{*}\right]\right]$ is a braided Poisson algebra (we'll give the definition later on). This was already proved for $\mathfrak{g}=\mathfrak{s l}(2, k)$ by Reshetikhin (cf. [Re]), and generalised to the case where \mathfrak{g} is Kac-Moody of finite (cf. [G1]) or affine (cf. [G2]) type by the first author.

In order to prove the result, we shall use quantization of universal enveloping algebras. After Etingof-Kazhdan (cf. [EK]), each Lie bialgebra admits a quantization $U_{h}(\mathfrak{g})$, namely a topological Hopf algebra over $k[[h]]$ whose specialisation at $h=0$ is isomorphic to $U(\mathfrak{g})$ as a co-Poisson Hopf algebra; in addition, if \mathfrak{g} is quasitriangular and r is its r-matrix, then such a $U_{h}(\mathfrak{g})$ exists which is quasitriangular too, as a Hopf algebra, with au R-matrix $R_{h}\left(\in U_{h}(\mathfrak{g}) \otimes U_{h}(\mathfrak{g})\right)$ such that $R_{h} \equiv 1+r h \bmod h^{2} \quad$ (where we have identified, as vector spaces, $\left.U_{h}(\mathfrak{g}) \cong U(\mathfrak{g})[[h]]\right)$.

Now, after Drinfel'd $(c f .[\mathrm{Dr}])$, for any quantised universal enveloping algebra U one can define also a certain Hopf subalgebra U^{\prime} such that, if the semiclassical limit of U is

[^0]$U(\mathfrak{g})$ (with \mathfrak{g} a Lie bialgebra), then the semiclassical limit of U^{\prime} is $F\left[\left[\mathfrak{g}^{*}\right]\right]$. In our case, when considering $U_{h}(\mathfrak{g})^{\prime}$ one can observe that the R-matrix does not belong, a priori, to $U_{h}(\mathfrak{g})^{\prime} \otimes U_{h}(\mathfrak{g})^{\prime} ;$ nevertheless, we prove that its adjoint action $\mathfrak{R}_{h}:=\operatorname{Ad}\left(R_{h}\right): U_{h}(\mathfrak{g}) \otimes$ $U_{h}(\mathfrak{g}) \longrightarrow U_{h}(\mathfrak{g}) \otimes U_{h}(\mathfrak{g}), x \otimes y \mapsto R_{h} \cdot(x \otimes y) \cdot R_{h}^{-1}$, stabilises $U_{h}(\mathfrak{g})^{\prime} \otimes U_{h}(\mathfrak{g})^{\prime}$, hence it induces by specialisation an operator \mathfrak{R}_{0} on $F\left[\left[\mathfrak{g}^{*}\right]\right] \otimes F\left[\left[\mathfrak{g}^{*}\right]\right]$. Finally, the properties which make R_{h} an R-matrix imply that \Re_{h} is a braiding operator, whence the same holds for \mathfrak{R}_{0} : thus the pair $\left(F\left[\left[\mathfrak{g}^{*}\right]\right], \mathfrak{R}_{0}\right)$ is braided Poisson algebra.

ACKNOWLEDGEMENTS

The authors wish to thank M. Rosso and C. Kassel for several useful conversations.

§ 1. Recallings and definitions

1.1 The classical objects. Let k be a fixed field of characteristic zero. In the following k will be the ground field of all the objects - Lie algebras and bialgebras, Hopf algebras, etc. - which we'll introduce.

Following [CP], §1.3, we call Lie bialgebra a pair ($\mathfrak{g}, \delta_{\mathfrak{g}}$) where \mathfrak{g} is a Lie algebra and $\delta_{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ is a antisymmetric linear map - called Lie cobracket - such that its dual $\delta_{\mathfrak{g}}^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ be Lie bracket and that δ_{g} itself be a 1-cocycle of \mathfrak{g} with values in $\mathfrak{g} \otimes \mathfrak{g}$. Then it happens that also \mathfrak{g}^{*}, the linear dual of \mathfrak{g}, is a Lie bialgebra on its own. Following [CP], §2.1.B, we call quasitriangular Lie bialgebra a pair (\mathfrak{g}, r) such that $r \in \mathfrak{g} \otimes \mathfrak{g}$ be a solution of the classical Yang-Baxter equation (CYBE) $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$ in $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$ and \mathfrak{g} be a Lie bialgebra with respect to the cobracket $\delta=\delta_{\mathfrak{g}}$ defined by $\delta(x)=[x, r]$; the element r is then called r-matrix of \mathfrak{g}.

If \mathfrak{g} is a Lie algebra, its universal enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra; if, in addition, \mathfrak{g} is a Lie bialgebra, then $U(\mathfrak{g})$ is in fact a co-Poisson Hopf algebra (cf. [CP], §6.2.A).

Let \mathfrak{g} be any Lie algebra: then we call function algebra on the formal group associated to \mathfrak{g}, or simply formal group associated to \mathfrak{g}, the space $F[[\mathfrak{g}]]:=U(\mathfrak{g})^{*}$ linear dual of $U(\mathfrak{g})$. As $U(\mathfrak{g})$ is a Hopf algebra, its dual $F[[\mathfrak{g}]]$ is on its own a formal Hopf algebra (following [Di], Ch. 1). Note that, if G is a connected algebraic group whose tangent Lie algebra is \mathfrak{g}, letting $F[G]$ be the Hopf algebra of regular functions on G and letting \mathfrak{m}_{e} be the maximal ideal of $F[G]$ of functions vanishing at the unit point $e \in G$, the formal Hopf algebra $F[[\mathfrak{g}]]$ is nothing but the \mathfrak{m}_{e}-adic completion of $F[G]$ (cf. [On], Ch. I). When, in addition, \mathfrak{g} is a Lie bialgebra, $F[[\mathfrak{g}]]$ is in fact a formal Poisson Hopf algebra (cf. [CP], §6.2.A).
1.2 Braidings and quasitriangularity. Let H be a Hopf algebra in a tensor category $(\mathcal{A}, \otimes)(c f .[\mathrm{CP}], \S 5): H$ is called braided (cf. [Re], Définition 2) if there exists an algebra automorphism \mathfrak{R} of $H \otimes H$, called braiding operator of H, different from the flip $\sigma: H^{\otimes 2} \rightarrow$ $H^{\otimes 2}, a \otimes b \mapsto b \otimes a$, and such that

$$
\begin{gathered}
\mathfrak{R} \circ \Delta=\Delta^{\mathrm{op}} \\
(\Delta \otimes i d) \circ \mathfrak{R}=\mathfrak{R}_{13} \circ \mathfrak{R}_{23} \circ(\Delta \otimes i d), \quad(i d \otimes \Delta) \circ \mathfrak{R}=\mathfrak{R}_{13} \circ \mathfrak{R}_{12} \circ(i d \otimes \Delta)
\end{gathered}
$$

where Δ^{op} is the opposite comultiplication, i. e. $\Delta^{\mathrm{op}}(a)=\sigma \circ \Delta(a)$, and $\mathfrak{R}_{12}, \mathfrak{R}_{13}$, and \mathfrak{R}_{23} are the automorphisms of $H \otimes H \otimes H$ defined by $\mathfrak{R}_{12}=\mathfrak{R} \otimes i d, \mathfrak{R}_{23}=i d \otimes \mathfrak{R}$, $\mathfrak{R}_{13}=(\sigma \otimes i d) \circ(i d \otimes \mathfrak{R}) \circ(\sigma \otimes i d)$.

Finally, when H is, in addition, a Poisson Hopf algebra, we'll say that it is braided as a Poisson Hopf algebra - if it is braided - as a Hopf algebra - by a braiding which is also an automorphism of Poisson algebra.

If the pair (H, \mathfrak{R}) is a braided algebra, it follows from the definition that \mathfrak{R} satisfies the quantum Yang-Baxter equation - QYBE in the sequel - in $\operatorname{End}\left(H^{\otimes 3}\right)$, that is

$$
\mathfrak{R}_{12} \circ \mathfrak{R}_{13} \circ \Re_{23}=\Re_{23} \circ \Re_{13} \circ \Re_{12}
$$

which implies that, for all $n \in \mathbb{N}$ the braid group \mathcal{B}_{n} acts on $H^{\otimes n}$, from which one can also obtain some knot invariants, according to the recipe given in [CP], $\S 15.12$.

A Hopf algebra H (in a tensor category) is said to be quasitriangular (cf. [Dr], [CP]) if there exists an invertible element $R \in H \otimes H$, called the R-matrix of H, such that

$$
\begin{gathered}
R \cdot \Delta(a) \cdot R^{-1}=\operatorname{Ad}(R)(\Delta(a))=\Delta^{\mathrm{op}}(a) \\
(\Delta \otimes i d)(R)=R_{13} R_{23}, \quad(i d \otimes \Delta)(R)=R_{13} R_{12}
\end{gathered}
$$

where $R_{12}, R_{13}, R_{23} \in H^{\otimes 3}, R_{12}=R \otimes 1, R_{23}=1 \otimes R, R_{13}=(\sigma \otimes i d)\left(R_{23}\right)=$ $(i d \otimes \sigma)\left(R_{12}\right)$. Then it follows from the identities above that R satisfies the QYBE in $H^{\otimes 3}$

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}
$$

Thus, the tensor products of H-modules are endowed with an action of the braid group. Moreover, it is clear that if (H, R) is quasitriangular, then $(H, \operatorname{Ad}(R))$ is braided.
1.3 The quantum objects. Let \mathcal{A} be the category whose objets are the $k[[h]]-$ modules which are topologically frees and complete in h-adic sense, and the morphisms are the $k[[h]]$-linear continuous maps. For all V, W in \mathcal{A}, we define $V \otimes W$ to be the projective limit of the $k[[h]] /\left(h^{n}\right)$-modules $\left(V / h^{n} V\right) \otimes_{k[h]] /\left(h^{n}\right)}\left(W / h^{n} W\right)$: this makes \mathcal{A} into a tensor category (see [CP] for further details). After Drinfel'd (cf. [Dr]), we call quantised universal enveloping algebra - QUEA in the sequel - any Hopf algebra in the category \mathcal{A} whose semiclassical limit ($=$ specialisation at $h=0$) is the universal enveloping algebra of a Lie bialgebra. Similarly, we call quantised formal series Hopf algebra - QFSHA in the sequel - any Hopf algebra in the category \mathcal{A} whose semiclassical limit is the function algebra of a formal group.

In the sequel, we shall need the following result:
Theorem 1.4. (cf. [EK]) Let \mathfrak{g} be a Lie bialgebra. Then there exists a QUEA $U_{h}(\mathfrak{g})$ whose semiclassical limit is isomorphic to $U(\mathfrak{g})$; furthermore, there exists an isomorphism of $k[[h]]-$ modules $U_{h}(\mathfrak{g}) \cong U(\mathfrak{g})[[h]]$.

In addition, if \mathfrak{g} is quasitriangular, with r-matrix r, then there exists a QUEA $U_{h}(\mathfrak{g})$ as above and an element $R_{h} \in U_{h}(\mathfrak{g}) \otimes U_{h}(\mathfrak{g})$ such that $\left(U_{h}(\mathfrak{g}), R_{h}\right)$ be a quasitriangular Hopf algebra and $R_{h}=1+r h+O\left(h^{2}\right) \quad$ (with $O\left(h^{2}\right) \in h^{2} \cdot H \otimes H$).
1.5 The Drinfeld's functor. Let H be a Hopf algebra over $k[[h]]$. For all $n \in \mathbb{N}$, define $\Delta^{n}: H \longrightarrow H^{\otimes n}$ by $\Delta^{0}:=\epsilon, \Delta^{1}:=i d_{H}$, and $\Delta^{n}:=\left(\Delta \otimes i d_{H}^{\otimes(n-2)}\right) \circ \Delta^{n-1}$ if $n>2$. For all ordered subset $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ with $i_{1}<\cdots<i_{k}$, define the homomorphism $j_{\Sigma}: H^{\otimes k} \longrightarrow H^{\otimes n}$ by $j_{\Sigma}\left(a_{1} \otimes \cdots \otimes a_{k}\right):=b_{1} \otimes \cdots \otimes b_{n}$ with $b_{i}:=1$ if $i \notin \Sigma$ and $b_{i_{m}}:=a_{m}$ for $1 \leq m \leq k$; then set $\Delta_{\Sigma}:=j_{\Sigma} \circ \Delta^{k}$. Finally, define
$\delta_{n}: H \longrightarrow H^{\otimes n}$ by $\delta_{n}:=\sum_{\Sigma \subseteq\{1, \ldots, n\}}(-1)^{n-|\Sigma|} \Delta_{\Sigma}$, for all $n \in \mathbb{N}_{+}$. More in general, for all $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$, with $i_{1}<\cdots<i_{k}$, define

$$
\begin{equation*}
\delta_{\Sigma}:=\sum_{\Sigma^{\prime} \subseteq \Sigma}(-1)^{|\Sigma|-\left|\Sigma^{\prime}\right|} \Delta_{\Sigma^{\prime}} \tag{1.1}
\end{equation*}
$$

(in particular, $\delta_{\{1, \ldots, n\}}=\delta_{n}$). Thanks to the inclusion-exclusion principle, this is equivalent to

$$
\begin{equation*}
\Delta_{\Sigma}=\sum_{\Sigma^{\prime} \subseteq \Sigma} \delta_{\Sigma^{\prime}} \tag{1.2}
\end{equation*}
$$

for all $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ with $i_{1}<\cdots<i_{k}$. Finally, define

$$
H^{\prime}:=\left\{a \in H \mid \delta_{n}(a) \in h^{n} H^{\otimes n}\right\},
$$

a subspace of H which we consider endowed with the induced topology. Then we have
Theorem 1.6. (cf. [Dr], §7, ou [G3]) Let H be a Hopf algebra in the category \mathcal{A}. Then H^{\prime} is a QFSHA. Moreover, if $H=U_{h}(\mathfrak{g})$ is a QUEA, with $U(\mathfrak{g})$ as semiclassical limit, then the semiclassical limit of $U_{h}(\mathfrak{g})^{\prime}$ is $F\left[\left[\mathfrak{g}^{*}\right]\right]$.

$\S 2$. The main results

From the technical point of view, the main result of this paper concerns the general framework of quasitriangular Hopf algebras:
Theorem 2.1. Let H be a quasitriangular Hopf algebra in the category \mathcal{A}, and let R be its R-matrix. Then, the inner automorphism $\operatorname{Ad}(R): H \otimes H \rightarrow H \otimes H$ restricts to an automorphism of $H^{\prime} \otimes H^{\prime}$, and the pair $\left(H^{\prime},\left.\operatorname{Ad}(R)\right|_{H^{\prime} \otimes H^{\prime}}\right)$ is a braided Hopf algebra in the category \mathcal{A}.

The proof of this theorem will be given in section 3. Nevertheless, we can already get out of it as a consequence the main result announced by the title and in the introduction, which gives us a geometrical interpretation of the classical r-matrix:

Theorem 2.2. Let \mathfrak{g} be a quasitriangular Lie bialgebra. Then the topological Poisson Hopf algebra $F\left[\left[\mathfrak{g}^{*}\right]\right]$ is braided. Moreover, there exists a quantisation of $F\left[\left[\mathfrak{g}^{*}\right]\right]$ which is a braided Hopf algebra whose braiding operator specialises into that of $F\left[\left[\mathfrak{g}^{*}\right]\right]$.
Proof. Let r be the r-matrix of \mathfrak{g}. By Theorem 1.4, there exists a quasitriangular QUEA $\left(U_{h}(\mathfrak{g}), R_{h}\right)$ whose semiclassical limit is exactly $(U(\mathfrak{g}), r)$: that is, $U_{h}(\mathfrak{g}) / h U_{h}(\mathfrak{g}) \cong U(\mathfrak{g})$ and $(R-1) / h \equiv r \bmod h U_{h}(\mathfrak{g})^{\otimes 2}$; and by Theorem 1.6, the semiclassical limit of $U_{h}(\mathfrak{g})^{\prime}$ is $F\left[\left[\mathfrak{g}^{*}\right]\right]$. Let $\mathfrak{R}_{h}:=\operatorname{Ad}\left(R_{h}\right):$ then Theorem 2.1 ensures that $\left(U_{h}(\mathfrak{g})^{\prime},\left.\mathfrak{R}_{h}\right|_{U_{h}(\mathfrak{g})^{\prime} \otimes U_{h}(\mathfrak{g})^{\prime}}\right)$ is a braided Hopf algebra, hence its semiclassical limit $\left(F\left[\left[\mathfrak{g}^{*}\right]\right],\left.\left(\left.\mathfrak{R}_{h}\right|_{U_{h}(\mathfrak{g})^{\prime} \otimes U_{h}(\mathfrak{g})^{\prime}}\right)\right|_{h=0}\right)$
is braided as well. Furthermore, as \mathfrak{R}_{h} is an algebra automorphism and the Poisson bracket of $F\left[\left[\mathfrak{g}^{*}\right]\right]$ is given by $\{a, b\}=\left.([\alpha, \beta] / h)\right|_{h=0}$ for all $a, b \in F\left[\left[\mathfrak{g}^{*}\right]\right]$ and $\alpha, \beta \in U_{h}(\mathfrak{g})^{\prime}$ such that $\left.\alpha\right|_{h=0}=a,\left.\beta\right|_{h=0}=b$, we have that $\left.\left(\left.\mathfrak{R}_{h}\right|_{U_{h}(\mathfrak{g})^{\prime} \otimes U_{h}(\mathfrak{g})^{\prime}}\right)\right|_{h=0}$ is also an automorphism of Poisson algebra.

The theorem above gives a geometrical interpretation of the r-matrix of a quasitriangular Lie bialgebra. This very result had been proved for $\mathfrak{g}=\mathfrak{s l}(2, k)$ by Reshetikhin (cf. [Re]), and generalised to the case when \mathfrak{g} is Kac-Moody of finite type (cf. [G1], where a more precise analysis is carried on) or affine type (cf. [G2]) by the first author.

Theorem 2.2 has also an important consequence. Let \mathfrak{g} and \mathfrak{g}^{*} be as above, let \mathfrak{R} be the braiding of $F\left[\left[\mathfrak{g}^{*}\right]\right]$, and let \mathfrak{e} be the (unique) maximal ideal of $F\left[\left[\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}\right]\right]=$ $F\left[\left[\mathfrak{g}^{*}\right]\right] \otimes F\left[\left[\mathfrak{g}^{*}\right]\right]$ (topological tensor product, following [Di], Ch. 1). Now, \mathfrak{R} is an algebra automorphism, hence $\mathfrak{R}(\mathfrak{e})=\mathfrak{e}$, and \mathfrak{R} induces an automorphism of vector space $\overline{\mathfrak{R}}: \mathfrak{e} / \mathfrak{e}^{2} \rightarrow \mathfrak{e} / \mathfrak{e}^{2}$; in addition, $\mathfrak{e} / \mathfrak{e}^{2} \cong \mathfrak{g} \oplus \mathfrak{g}$, and since \mathfrak{R} is also an automorphism of Poisson algebra, one has that $\overline{\mathfrak{R}}$ is a Lie algebra automorphism of $\mathfrak{g} \oplus \mathfrak{g}=\mathfrak{e} / \mathfrak{e}^{2}$; the other properties of the braiding $\mathfrak{\Re}$ make so that $\bar{\Re}$ have other corresponding properties. Finally, the dual $\overline{\mathfrak{R}}^{*}: \mathfrak{g}^{*} \oplus \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$ is a Lie coalgebra automorphism of $\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$, enjoying many other properties dual of those of $\overline{\mathfrak{R}}$. In particular, $\mathfrak{R}, \overline{\mathfrak{R}}$ and $\overline{\mathfrak{R}}^{*}$ are solutions of the QYBE, whence there is an action of the braid group \mathcal{B}_{n} on $F\left[\left[\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}\right]\right]^{\otimes n}$, on $(\mathfrak{g} \oplus \mathfrak{g})^{\otimes n}$, and on $\left(\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}\right)^{\otimes n}(n \in \mathbb{N})$, and from that one can obtain knot invariants (following [CP], §15.12). Now, such automorphisms of $\mathfrak{g} \oplus \mathfrak{g}$ and of $\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$ have been introduced in [WX], $\S 9$, related to the so-called "global R-matrix", which also yields a geometrical interpretation of the classical r-matrix: comparing our results with those of [WX], as well as the functoriality properties of our construction, will be the matter of a forthcoming article.

§ 3. Proof of theorem 2.1

In this section (H, R) will be a quasitriangular Hopf algebra as in the statement of Theorem 2.1. We want to study the adjoint action of R on $H \otimes H$, where the latter is endowed with ite natural structure of Hopf algebra; we denote by $\tilde{\Delta}$ its coproduct, defined by $\tilde{\Delta}:=s_{23} \circ\left(\Delta \otimes i d_{H} \otimes i d_{H}\right) \circ\left(i d_{H} \otimes \Delta\right)$ where s_{23} denotes the flip in the positions 2 and 3. We'll denote also $I:=1 \otimes 1$ the unit in $H \otimes H$. After our definition of tensor product in \mathcal{A}, we have $(H \otimes H)^{\prime}=H^{\prime} \otimes H^{\prime}$. Our goal is to show that, although R do not necessarily belong to $(H \otimes H)^{\prime}$, its adjoint action $a \mapsto R \cdot a \cdot R^{-1}$ leaves stable $(H \otimes H)^{\prime}=H^{\prime} \otimes H^{\prime}$.

First of all set, for $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$, always with $i_{1}<\cdots<i_{k}$,
$R_{\Sigma}:=R_{2 i_{1}-1,2 i_{k}} R_{2 i_{1}-1,2 i_{k-1}} \cdots R_{2 i_{1}-1,2 i_{1}} R_{2 i_{2}-1,2 i_{k}} \cdots R_{2 i_{k-1}-1,2 i_{k}} R_{2 i_{k}-1,2 i_{1}} \cdots R_{2 i_{k}-1,2 i_{1}}$ (product of k^{2} terms) where $R_{i, j}:=j_{\{i, j\}}(R)$, defining $j_{\{r, s\}}: H \otimes H \longrightarrow H^{\otimes 2 n}$ as before. We shall always write $|\Sigma|$ for the cardinality of Σ (here $|\Sigma|=k)$.

Lemma 3.1. In $(H \otimes H)^{\otimes n}$, for all $\Sigma \subseteq\{1, \ldots, n\}$, we have: $\tilde{\Delta}_{\Sigma}(R)=R_{\Sigma}$.
Proof. With no loss of generality, we'll prove the result for $\Sigma=\{1, \ldots, n\}$, i.e.
$\tilde{\Delta}_{\{1, \ldots, n\}}(R)=R_{\{1, \ldots, n\}}=R_{1,2 n} \cdot R_{1,2 n-2} \cdots R_{1,2} \cdot R_{3,2 n} \cdots R_{2 n-3,2} \cdot R_{2 n-1,2 n} \cdots R_{2 n-1,2}$.

The result is evident at rank $n=1$. Assume it be true at rank n, and prove it at rank $n+1$; by definition of $\tilde{\Delta}$ and by the properties of the R-matrix we have

$$
\begin{aligned}
\tilde{\Delta}_{\{1, \ldots, n+1\}}(R) & =\left(\tilde{\Delta} \otimes i d_{H \otimes H}^{\otimes n-1}\right)\left(\tilde{\Delta}_{\{1, \ldots, n\}}(R)\right)=\left(\tilde{\Delta} \otimes i d_{H \otimes H}^{\otimes n-1}\right)\left(R_{\{1, \ldots, n\}}\right) \\
& =s_{23}\left(\Delta \otimes i d_{H}^{\otimes 2 n}\right)\left(i d_{H} \otimes \Delta \otimes i d_{H}^{\otimes(2 n-2)}\right)\left(R_{1,2 n} \cdots R_{1,2} \cdots R_{3,2} \cdots R_{2 n-1,2}\right) \\
& =s_{23}\left(\Delta \otimes i d_{H}^{\otimes 2 n}\right)\left(R_{1,2 n+1} \cdots R_{1,3} R_{1,2} \cdots R_{4,3} R_{4,2} \cdots R_{2 n, 3} R_{2 n, 2}\right)= \\
= & s_{23}\left(R_{1,2 n+2} R_{2,2 n+2} \cdots R_{1,4} R_{2,4} R_{1,3} R_{2,3} \cdots R_{5,4} R_{5,3} \cdots R_{2 n+1,4} R_{2 n+1,3}\right) \\
= & R_{1,2 n+2} R_{3,2 n+2} \cdots R_{1,4} R_{3,4} \cdot R_{1,2} R_{3,2} \cdots R_{5,4} \cdot R_{5,2} \cdots R_{2 n+1,4} R_{2 n+1,2} \\
= & R_{1,2 n+2} \cdots R_{1,4} R_{1,2} R_{3,2 n+2} \cdots R_{3,4} R_{3,2} \cdots R_{5,4} R_{5,2} \cdots R_{2 n+1,4} R_{2 n+1,2} \\
= & R_{\{1, \ldots, n+1\}}, \quad \text { q.e.d. } \quad \square
\end{aligned}
$$

From now on we shall use the notation $C_{b}^{a}:=\binom{b}{a}$ for all $a, b \in \mathbb{N}$.
Lemma 3.2. For all $a \in(H \otimes H)^{\prime}$, and for all set Σ such that $|\Sigma|>i$, we have

$$
\tilde{\Delta}_{\Sigma}(a)=\sum_{\Sigma^{\prime} \subseteq \Sigma,\left|\Sigma^{\prime}\right| \leq i}(-1)^{i-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{i-\left|\Sigma^{\prime}\right|} \tilde{\Delta}_{\Sigma^{\prime}}(a)+O\left(h^{i+1}\right) .
$$

Proof. It is enough to prove the claim for $\Sigma=\{1, \ldots, n\}$, with $n>i$. Due to (1.2), we have

$$
\begin{aligned}
\tilde{\Delta}_{\{1, \ldots, n\}}(a) & =\sum_{\bar{\Sigma} \subseteq\{1, \ldots, n\}} \delta_{\bar{\Sigma}}(a)=\sum_{\bar{\Sigma} \subseteq\{1, \ldots, n\},|\bar{\Sigma}| \leq i} \delta_{\bar{\Sigma}}(a)+O\left(h^{i+1}\right) \\
& =\sum_{\bar{\Sigma} \subseteq\{1, \ldots, n\},|\bar{\Sigma}| \leq i} \sum_{\Sigma^{\prime} \subseteq \bar{\Sigma}}(-1)^{|\bar{\Sigma}|-\left|\Sigma^{\prime}\right|} \tilde{\Delta}_{\Sigma^{\prime}}(a)+O\left(h^{i+1}\right) \\
& =\sum_{\Sigma^{\prime} \subseteq\{1, \ldots, n\},\left|\Sigma^{\prime}\right| \leq i} \tilde{\Delta}_{\Sigma^{\prime}}(a) \sum_{\Sigma^{\prime} \subseteq \bar{\Sigma},|\bar{\Sigma}| \leq i}(-1)^{|\bar{\Sigma}|-\left|\Sigma^{\prime}\right|}+O\left(h^{i+1}\right) \\
& =\sum_{\Sigma^{\prime} \subseteq\{1, \ldots, n\},\left|\Sigma^{\prime}\right| \leq i} \tilde{\Delta}_{\Sigma^{\prime}}(a)(-1)^{i-\left|\Sigma^{\prime}\right|} C_{n-1-\left|\Sigma^{\prime}\right|}^{i-\left|\Sigma^{\prime}\right|}+O\left(h^{i+1}\right), \text { q.e.d. }
\end{aligned}
$$

Before going on with the main result, we need still another minor technical fact about the binomial coefficients: one can easily prove it using the formal series expansion of $(1-X)^{-(r+1)}$, namely $(1-X)^{-(r+1)}=\sum_{k=0}^{\infty} C_{k+r}^{r} X^{k}$.
Lemma 3.3. Let $r, s, t \in \mathbb{N}$ be such that $r<t$. Then we have the following relations (where we set $C_{u}^{v}:=0$ if $v>u$):
(a) $\sum_{d=0}^{t}(-1)^{d} C_{d-1}^{r} C_{t}^{d}=-(-1)^{r}$,
(b) $\quad \sum_{d=0}^{t}(-1)^{d} C_{d+s}^{r} C_{t}^{d}=0$.

Finally, here is the main result of this section:

Proposition 3.4. For all $a \in(H \otimes H)^{\prime}$, we have $R a R^{-1} \in(H \otimes H)^{\prime}$.
Proof. As we have to show that $R a R^{-1}$ belongs to $(H \otimes H)^{\prime}$, we have to consider the terms $\delta_{n}\left(R a R^{-1}\right), n \in \mathbb{N}$. For this we go and re-write $\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)$ by using Lemma 3.1 and the fact that $\tilde{\Delta}$ and more in general $\tilde{\Delta}_{\left\{i_{1}, \ldots, i_{k}\right\}}$, for $k \leq n$, are algebra morphisms; then $\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)=\sum_{\Sigma \subseteq\{1, \ldots, n\}}(-1)^{n-|\Sigma|} R_{\Sigma} \tilde{\Delta}_{\Sigma}(a) R_{\Sigma}^{-1}$.

We shall prove by induction on i that

$$
\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)=O\left(h^{i+1}\right) \quad \text { for all } \quad 0 \leq i \leq n-1
$$

In other words, we'll see that all the terms of the expansion truncated at the order $n-1$ are zero, hence $\delta_{n}\left(R a R^{-1}\right)=O\left(h^{n}\right)$, whence our claim.

For $i=0$, we have, for each $\Sigma: \tilde{\Delta}_{\Sigma}(a)=\epsilon(a) I^{\otimes n}+O(h)$ and $R_{\Sigma}=I^{\otimes n}+O(h)$, and similarly $R_{\Sigma}^{-1}=I^{\otimes n}+O(h)$, whence $\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)=\sum_{k=1}^{n} C_{n}^{k}(-1)^{n-k} \epsilon(a) I^{\otimes n}+$ $+O(h)=O(h)$, thus the result (\star) is true for $i=0$.

Let's assume the result (\star) proved for all $i^{\prime}<i$. Write the h-adic expansions of R_{Σ} and R_{Σ}^{-1} in the form $R_{\Sigma}=\sum_{\ell=0}^{\infty} R_{\Sigma}^{(\ell)} h^{\ell}$ and $R_{\Sigma}^{-1}=\sum_{m=0}^{\infty} R_{\Sigma}^{(-m)} h^{m}$. By the previous proposition, we have an approximation of $\tilde{\Delta}_{\Sigma}(a)$ at the order j

$$
\tilde{\Delta}_{\Sigma}(a)=\sum_{\Sigma^{\prime} \subseteq \Sigma,\left|\Sigma^{\prime}\right| \leq j}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} \tilde{\Delta}_{\Sigma^{\prime}}(a)+O\left(h^{j+1}\right) .
$$

Then we have the following approximation of $\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)$:

$$
\begin{aligned}
& \delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)=\sum_{\Sigma \subseteq\{1, \ldots, n\}} \sum_{\ell+m \leq i}(-1)^{n-|\Sigma|} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma}(a) R_{\Sigma}^{(-m)} h^{\ell+m}+O\left(h^{i+1}\right)= \\
& =\sum_{j=0}^{i} \sum_{\ell+m=i-j}\left(\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\
|\Sigma|>j}} \sum_{\substack{\Sigma^{\prime} \subseteq \Sigma \\
\left|\Sigma^{\prime}\right| \leq j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}+\right. \\
& \left.+\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\
|\Sigma| \leq j}}(-1)^{n-|\Sigma|} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma}(a) R_{\Sigma}^{(-m)}\right) h^{\ell+m}+O\left(h^{i+1}\right)= \\
& =\sum_{j=0}^{i} \sum_{\ell+m+j=i} \sum_{\substack{ \\
\Sigma^{\prime} \subseteq\{1, \ldots, n\} \\
\left|\Sigma^{\prime}\right| \leq j}}\left(\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\
\Sigma^{\prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}+\right. \\
& \left.+(-1)^{n-\left|\Sigma^{\prime}\right|} R_{\Sigma^{\prime}}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma^{\prime}}^{(-m)}\right) h^{\ell+m}+O\left(h^{i+1}\right) .
\end{aligned}
$$

We denote (E) the last expression in brackets, and we'll show that this expression is zero, whence $\delta_{n}\left(R a R^{-1}\right)=O\left(h^{i+1}\right)$.

Let's look first at the terms corresponding to $\ell+m=0$, that is $j=i$. Then we find back $\delta_{\{1, \ldots, n\}}(a)$, which is in $O\left(h^{i+1}\right)$ by assumption. Therefore, by now on in the sequel of the computation we assume $\ell+m>0$.

Consider first how the terms $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ act on $(H \otimes H)^{\prime \otimes n}$ (respectively on the left and on the right) for $\ell+m$ fixed (and positive), say $\ell+m=S$.

Taking the truncated expansion of each $R_{i, j}$ which occurs in R_{Σ}, we see that $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ are sums of products of at most ℓ and m terms respectively, each one acting on at most two tensor of $(H \otimes H)^{\prime \otimes n}$. We re-write $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}$ by gathering together the terms of the sum which act on the same factors of $(H \otimes H)^{\otimes n}$: we'll denote the set of positions of this factors by $\Sigma^{\prime \prime}$.

Now, if i belongs to $\Sigma^{\prime \prime}$, in the identification $(H \otimes H)^{\otimes n}=H^{\otimes 2 n}$ (such as we chose it to define R_{Σ}) the index i corresponds to the pair $(2 i-1,2 i)$; but then R_{Σ} and R_{Σ}^{-1}, and then also each $R_{\Sigma}^{(\ell)}$ and each $R_{\Sigma}^{(-m)}$, may act non-trivially on the i-th factor of $\tilde{\Delta}_{\Sigma^{\prime}}(a)$ only if one of $2 i-1$ and $2 i$ (or even both of them) occurs in the explicit written expression of R_{Σ} (in $H^{\otimes 2 n}$), hence only if $i \in \Sigma$: thus $\Sigma^{\prime \prime} \subseteq \Sigma$. Then we set $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}=$ $\sum_{\Sigma^{\prime \prime} \subseteq \Sigma} A_{\Sigma^{\prime}, \Sigma, \Sigma^{\prime \prime}}^{(S)}(a)$.

Now consider $\bar{\Sigma} \supseteq \Sigma$. From the very definition we have $R_{\bar{\Sigma}}=R_{\Sigma}+\mathcal{A}$, where \mathcal{A} is a sum of terms which contain factors $R_{2 i-1,2 j}^{(s)}$ with $\{i, j\} \nsubseteq \Sigma$: to see this, it is enough to expand every factor $R_{a, b}$ in $R_{\bar{\Sigma}}$ as $R_{a, b}=1^{\otimes 2 n}+O(h)$. Similarly, we have also $R_{\bar{\Sigma}}^{(\ell)}=R_{\Sigma}^{(\ell)}+\mathcal{A}^{\prime}$, and similarly $R_{\bar{\Sigma}}^{(-m)}=R_{\Sigma}^{(-m)}+\mathcal{A}^{\prime \prime}$. This implies that $A_{\Sigma^{\prime \prime}, \bar{\Sigma}, \Sigma^{\prime}}^{(S)}(a)=A_{\Sigma^{\prime \prime}, \Sigma, \Sigma^{\prime}}^{(S)}(a)$, and so the $A_{\Sigma^{\prime \prime}, \Sigma, \Sigma^{\prime}}^{(S)}(a)$ do not depend on Σ; then we write

$$
\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}=\sum_{\Sigma^{\prime \prime} \subseteq \Sigma} A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)
$$

In the sequel we re-write (E) using the $A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)$. In the following we'll denote by $\delta_{\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}}$ the function whose value is 1 if $\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}$ and 0 if not.

Then we obtain a new expression for $\delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right)$, namely

$$
\begin{aligned}
& \delta_{\{1, \ldots, n\}}\left(R a R^{-1}\right) \\
&=\sum_{j=0}^{i-1} \sum_{\substack{\Sigma^{\prime} \subseteq\{1, \ldots, n\} \\
\left|\Sigma^{\prime}\right| \leq j}}\left(\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\
\Sigma^{\prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} \times\right. \\
&\left.\times \sum_{\Sigma^{\prime \prime} \subseteq \Sigma} A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(i-j)}(a)+(-1)^{n-\left|\Sigma^{\prime}\right|} \sum_{\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}} A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(i-j)}(a)\right) h^{i-j}+O\left(h^{i+1}\right)= \\
& \sum_{\substack{\Sigma^{\prime} \subseteq\{1, \ldots, n\} \\
\left|\Sigma^{\prime}\right| \leq j}} h^{i-j} \sum_{\Sigma^{\prime \prime} \subseteq\{1, \ldots, n\}} A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(i-j)}(a) \times \\
&\left.\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\
\Sigma^{\prime} \subseteq \Sigma, \Sigma^{\prime \prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|}+(-1)^{n-\left|\Sigma^{\prime}\right|} \delta_{\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}}\right)+O\left(h^{i+1}\right) .
\end{aligned}
$$

We denote $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}$ the new expression in brackets; in other words, for fixed Σ^{\prime} and $\Sigma^{\prime \prime}$, with $\left|\Sigma^{\prime}\right| \leq j$, we set

$$
\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}:=\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\ \Sigma^{\prime} \subseteq \Sigma, \Sigma^{\prime \prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|}+(-1)^{n-\left|\Sigma^{\prime}\right|} \delta_{\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}}
$$

(by the way, we remark that this is a purely combinatorial expression); we shall show that this expression is zero when Σ^{\prime} and $\Sigma^{\prime \prime}$ are such that $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right| \leq j-i+\left|\Sigma^{\prime}\right|$ and $\left|\Sigma^{\prime}\right| \leq j$. In force of the following lemma, this will be enough to prove Proposition 3.4.
Lemma 3.5.
(a) We have $j<i$ and $i \leq n-1$, hence $j \leq n-2$.
(b) For all $S>0$, in the expression $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} \tilde{\Delta}_{\Sigma^{\prime}}(a) R_{\Sigma}^{(-m)}=\sum_{\Sigma^{\prime \prime} \subseteq \Sigma} A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)$ we have that $A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)=0$ for all $\Sigma^{\prime}, \Sigma^{\prime \prime}$ such that $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|>S+\left|\Sigma^{\prime}\right|$.
Proof. The first part of the statement is trivial; to prove the second, we study the adjoint action of R_{Σ} on $(H \otimes H)^{\otimes n}$.

First of all, on $k \cdot I^{\otimes n}$ the action of these elements gives a zero term because one gets the term at the order S of the h-adic expansion of $R_{\Sigma} \cdot R_{\Sigma}^{-1}=1$ (for $S>0$).

Second, let us consider $\Sigma \subseteq\{1, \ldots, n\}$, and let us study the action on $(H \otimes H)_{\Sigma^{\prime}}:=$ $j_{\Sigma^{\prime}}\left((H \otimes H)^{\otimes|\Sigma|}\right)\left(\subseteq(H \otimes H)^{\otimes n}\right)$. We know that R_{Σ} is a product of $|\Sigma|^{2}$ terms of type $R_{a, b}$, with $a, b \in\{2 i-1,2 j \mid i, j \in \Sigma\}$; so let's analyse what happens when one computes the product $P:=R_{\Sigma} \cdot x \cdot R_{\Sigma}^{-1}$ if $x \in(H \otimes H)_{\Sigma}$.

Consider the rightmost factor $R_{a, b}$: if $a, b \notin\left\{2 j-1,2 j \mid j \in \Sigma^{\prime}\right\}$, then when computing P one gets $P:=R_{\Sigma} x R_{\Sigma}^{-1}=R_{\star} R_{a, b} x R_{a, b}^{-1} R_{\star}^{-1}=R_{\star} x R_{\star}^{-1}$ (where $R_{\star}:=R_{\Sigma} R_{a, b}^{-1}$). Similarly, moving further on from right to left along R_{Σ} one can discard all factors $R_{c, d}$ of this type, namely those such that $c, d \notin\left\{2 j-1,2 j \mid j \in \Sigma^{\prime}\right\}$. Thus the first factor whose adjoint action is non-trivial will be necessarily of type $R_{\bar{a}, \bar{b}}$ with one of the two indices belonging to $\left\{2 j-1,2 j \mid j \in \Sigma^{\prime}\right\}$, say for instance \bar{a}. Notice that the new index $\bar{a}(\in\{1,2, \ldots, 2 n-1,2 n\})$ - which "marks" a tensor factor in $H^{\otimes 2 n}$ - corresponds to a new index $j_{\bar{a}}(\in\{1, \ldots, n\})$ - marking a tensor factor of $(H \otimes H)^{\otimes n}$. So for the following factors - i.e. on the left of $R_{\bar{a}, \bar{b}}$ - one has to repeat the same analysis, but with the set $\left\{2 j-1,2 j \mid j \in \Sigma^{\prime} \cup\left\{j_{\bar{a}}\right\}\right\}$ instead of $\left\{2 j-1,2 j \mid j \in \Sigma^{\prime}\right\}$; therefore, as $R_{\bar{a}, \bar{b}}$ might act in non-trivial way on at most $\left|\Sigma^{\prime}\right|$ factors of $(H \otimes H)^{\otimes n}$, similarly the factor which is the closest on its left may act in a non-trivial way on at most $\left|\Sigma^{\prime}\right|+1$ factors. The upset is that the adjoint action of R_{Σ} is non-trivial on at most $\left|\Sigma^{\prime}\right|+|\Sigma|$ factors of $(H \otimes H)^{\otimes n}$.

Now consider the different terms $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$, with $\ell+m=S$, and study the products $R_{\Sigma}^{(\ell)} \cdot x \cdot R_{\Sigma}^{(-m)}$, with $x \in(H \otimes H)_{\Sigma}$. We already know that $R_{\Sigma}^{(\ell)}$ and $R_{\Sigma}^{(-m)}$ are sums of products, denoted P_{+}and P_{-}, of at most ℓ and m terms respectively, of type $R_{i, j}^{(\pm k)}$; the terms $A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)$ then are nothing but sums of terms of type $P_{+} \tilde{\Delta}_{\Sigma^{\prime}}(a) P_{-}$,
where in addition the products P_{+}and P_{-}have their "positions" in $\Sigma^{\prime \prime}$. Now, since each P_{+}and each P_{-}is a product of at most ℓ and m factors $R_{i, j}^{(\pm k)}$, one can refine the previous argument. Consider only the term at the order S of the h-adic expansion of $P:=R_{\Sigma} x R_{\Sigma}^{-1}=R_{\star} R_{a, b} x R_{a, b}^{-1} R_{\star}^{-1}=R_{\star} x R_{\star}^{-1}$: whenever there are factors of type $R_{a, b}^{(k)}$ or $R_{a, b}^{(t)}$, for fixed a, b - not belonging to $\left\{2 j-1,2 j \mid j \in \Sigma^{\prime}\right\}$ - which appear in $R_{\Sigma}^{(\ell)}$ or $R_{\Sigma}^{(-m)}$, for some ℓ or m, the total contribution of all these terms in the sum $\sum_{\ell+m=S} R_{\Sigma}^{(\ell)} x R_{\Sigma}^{(-m)}$ will be zero (this follows from the fact that $R_{\star} R_{a, b} x R_{a, b}^{-1} R_{\star}^{-1}=$ $\left.R_{\star} x R_{\star}^{-1}\right)$. In addition, since now we are dealing only with S factors in total, we conclude that $A_{\Sigma^{\prime}, \Sigma^{\prime \prime}}^{(S)}(a)=0$ if $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|>S+\left|\Sigma^{\prime}\right|$.

Now we shall compute $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}$. Thanks to the previous remark, we can limit ourselves to consider the pairs $\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right)$ such that $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right| \leq i-j+m+\left|\Sigma^{\prime}\right| \leq i-j+j=i \leq n-1$. Then one can always find at least two $\Sigma \subseteq\{1, \ldots, n\}$ such that $|\Sigma|>j$ and $\Sigma^{\prime} \cup \Sigma^{\prime \prime} \subseteq \Sigma$, which make us sure that there will always be at least two terms in the calculation which is to follow (such a condition will guarantee the vanishing of the expression $\left.\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}\right)$. We distinguish three cases:
(I) If $\Sigma^{\prime \prime} \subseteq \Sigma^{\prime}$, then the expression $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}$ becomes

$$
\left(E^{\prime}: 1\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\ \Sigma^{\prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|}+(-1)^{n-\left|\Sigma^{\prime}\right|}
$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$
\left(E^{\prime}: 1\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{d=j+1}^{n}(-1)^{n-d}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{d-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} C_{n-\left|\Sigma^{\prime}\right|}^{d-\left|\Sigma^{\prime}\right|}+(-1)^{n-\left|\Sigma^{\prime}\right|}
$$

Now, this last expression is zero by Lemma 3.3, for it corresponds to a sum of type $\sum_{k=r+1}^{t}(-1)^{t+r-k} C_{k-1}^{r} C_{t}^{k}+(-1)^{t}=\sum_{k=0}^{t}(-1)^{t+r-k} C_{k-1}^{r} C_{t}^{k}+(-1)^{t} \quad$ (where $C_{u}^{v}:=0$ if $v>u)$ with $r, t \in \mathbb{N}_{+}$and $r<t$: in our case we set $t=n-\left|\Sigma^{\prime}\right|, r=j-\left|\Sigma^{\prime}\right|$ and $k=d-\left|\Sigma^{\prime}\right|$; one verifies that one has just $j-\left|\Sigma^{\prime}\right|<n-\left|\Sigma^{\prime}\right|$ because $j<n$.
(II) If $\Sigma^{\prime \prime} \nsubseteq \Sigma^{\prime}$ and $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|>j$, then the expression $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}$ becomes

$$
\left(E^{\prime}: 2\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\ \Sigma^{\prime} \cup \Sigma^{\prime \prime} \subseteq \Sigma}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|}
$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$
\left(E^{\prime}: 2\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{d=\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|}^{n}(-1)^{n-d}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{d-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} C_{n-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|}^{d-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|}
$$

Again, the last expression is zero thanks to Lemma 3.3, for it corresponds to a sum of type $\sum_{k=0}^{t}(-1)^{t+r-k} C_{k+s}^{r} C_{t}^{k}$ with $r, t, s \in \mathbb{N}_{+}$and $r<t$: in our case we set
$t=n-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|, r=j-\left|\Sigma^{\prime}\right|, s=\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|-\left|\Sigma^{\prime}\right|-1$ and $k=d-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|$; then one verifies that $j-\left|\Sigma^{\prime}\right|<n-\left|\Sigma^{\prime}\right|$ for $j<n$ and $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|-\left|\Sigma^{\prime}\right|-1 \geq 0$ since $\Sigma^{\prime \prime} \nsubseteq \Sigma^{\prime}$.
(III) If $\Sigma^{\prime \prime} \nsubseteq \Sigma^{\prime}$ and $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right| \leq j$, then the expression $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}$ becomes

$$
\left(E^{\prime}: 3\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{\substack{\Sigma \subseteq\{1, \ldots, n\} \\ \Sigma^{\prime} \cup \Sigma^{\prime \prime} \subseteq \Sigma,|\Sigma|>j}}(-1)^{n-|\Sigma|}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{|\Sigma|-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} .
$$

Gathering together the Σ 's which share the same cardinality d, a simple computation gives

$$
\left(E^{\prime}: 3\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=\sum_{d=j+1}^{n}(-1)^{n-d}(-1)^{j-\left|\Sigma^{\prime}\right|} C_{d-1-\left|\Sigma^{\prime}\right|}^{j-\left|\Sigma^{\prime}\right|} C_{n-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|}^{d-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|}
$$

But again the last expression is zero because of Lemma 3.3, for it corresponds to a sum of type $\sum_{k=j+1-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime \prime}\right|}^{t}(-1)^{t+r-k} C_{k+s}^{r} C_{t}^{k}=\sum_{k=0}^{t}(-1)^{t+r-k} C_{k+s}^{r} C_{t}^{k} \quad$ (where $C_{u}^{v}:=0$ if $v>u)$ with $r, t, s \in \mathbb{N}_{+}$and $r<t$: here again we set $t=n-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|, r=j-\left|\Sigma^{\prime}\right|$, $s=\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|-\left|\Sigma^{\prime}\right|-1$ and $k=d-\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|$; one has, always for the same reasons, $j-\left|\Sigma^{\prime}\right|<n-\left|\Sigma^{\prime}\right|$ and $\left|\Sigma^{\prime} \cup \Sigma^{\prime \prime}\right|-\left|\Sigma^{\prime}\right|-1 \geq 0$.

Therefore, one has always $\left(E^{\prime}\right)_{\Sigma^{\prime}, \Sigma^{\prime \prime}}=0$, whence $(E)=0$, which ends the proof.

References

[CP] V. Chari, A. Pressley, A guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
[Di] J. Dixmier, Introduction to the theory of formal groups, Pure and Applied Mathematics 20 (1973).
[Dr] V. G. Drinfel'd, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986), 1987, pp. 798820.
[EK] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math. (New Series) 2 (1996), 1-41.
[G1] F. Gavarini, Geometrical Meaning of R-matrix action for Quantum groups at Roots of 1, Commun. Math. Phys. 184 (1997), 95-117.
[G2] F. Gavarini, The R-matrix action of untwisted affine quantum groups at roots of 1 (to appear in Jour. Pure Appl. Algebra).
[G3] F. Gavarini, The quantum duality principle, Preprint.
[On] A. L. Onishchik (Ed.), Lie Groups and Lie Algebras I, Encyclopaedia of Mathematical Sciences 20 (1993).
[Re] N. Reshetikhin, Quasitriangularity of quantum groups at roots of 1, Commun. Math. Phys. 170 (1995), 79-99.
[WX] A. Weinstein, P. Xu, Classical Solutions of the Quantum Yang-Baxter Equation, Commun. Math. Phys. 148 (1992), 309-343.

[^1]
[^0]: 1991 Mathematics Subject Classification: Primary 17B37, 81R50
 ${ }^{\dagger}$ Partially supported by a fellowship of the Consiglio Nazionale delle Ricerche (Italy)
 Published in Journal of Pure and Applied Algebra 161 (2001), 295-307.

[^1]: † Università degli Studi di Roma "Tor Vergata" - Dipartimento di Matematica
 Via della Ricerca Scientifica, 1 - I-00133 Roma, ITALY-e-mail: gavarini@mat.uniroma2.it
 \ddagger Institut de Recherche Mathématique Avancée - e-mail: halbout@math.u-strasbg.fr 7, rue René Descartes - 67084 STRASBOURG Cedex, FRANCE

