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ABSTRACT. Let g be a quasitriangular Lie bialgebra over a field k of characteristic zero, and
let g* be its dual Lie bialgebra. We prove that the formal Poisson group F[[g*]] is a braided
Hopf algebra. More generally, we prove that if (Uh, R) is any quasitriangular QUEA, then
(Uh’, Ad(R)|,;,, ®Uh,) — where Uy is defined by Drinfeld — is a braided QFSHA. The first

result is then just a consequence of the existence of a quasitriangular quantization (U, R) of
U(g) and of the fact that U}/ is a quantization of F[[g*]].

Introduction

Let g be a Lie Lie bialgebra over a field k of characteristic zero; let g* be the dual Lie
bialgebra of g; finally denote F'[[g*]] the algebra of functions on the formal Poisson group
associated to g*. If g is quasitriangular, endowed with the r—matrix r, this gives g some
additional properties. A question then rises: what new structure one obtains on the dual
bialgebra g* ? In this work we shall show that the topological Poisson Hopf algebra F[[g*]]
is a braided Poisson algebra (we’ll give the definition later on). This was already proved for
g = sl(2, k) by Reshetikhin (cf. [Re]), and generalised to the case where g is Kac-Moody
of finite (cf. [G1]) or affine (cf. [G2]) type by the first author.

In order to prove the result, we shall use quantization of universal enveloping algebras.
After Etingof-Kazhdan (cf. [EK]), each Lie bialgebra admits a quantization Uy, (g), namely
a topological Hopf algebra over k[[h]] whose specialisation at h = 0 is isomorphic to U(g)
as a co-Poisson Hopf algebra; in addition, if g is quasitriangular and r is its r—matrix,
then such a Uy (g) exists which is quasitriangular too, as a Hopf algebra, with au R—matrix
Ry (€ Un(g) ® Up(g)) such that Ry, = 1+ rh mod h? (where we have identified, as
vector spaces, Up(g) = U(g)[[h]])-

Now, after Drinfel’d (cf. [Dr]), for any quantised universal enveloping algebra U one
can define also a certain Hopf subalgebra U’ such that, if the semiclassical limit of U is
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2 FABIO GAVARINI, GILLES HALBOUT

U(g) (with g a Lie bialgebra), then the semiclassical limit of U’ is F[[g*]]. In our case,
when considering Uh(g)/ one can observe that the R—matrix does not belong, a priori, to
Un(g) ® Upn(g)'; nevertheless, we prove that its adjoint action R := Ad(Ry) : Un(g) ®
Un(g) — Un(g) @Un(g), 2@y — Ry - (x®@vy)- R, ", stabilises Uy (g)’ @ Un(g)’, hence
it induces by specialisation an operator Ry on F|[g*]] ® F[[g*]]. Finally, the properties
which make Rj; an R—matrix imply that Rj is a braiding operator, whence the same holds
for Mo : thus the pair (F[[g*]],Ro) is braided Poisson algebra.
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§ 1. Recallings and definitions

1.1 The classical objects. Let k be a fixed field of characteristic zero. In the following
k will be the ground field of all the objects — Lie algebras and bialgebras, Hopf algebras,
etc. — which we’ll introduce.

Following [CP], §1.3, we call Lie bialgebra a pair (g,d4) where g is a Lie algebra and

dg: § — g ® g is a antisymmetric linear map — called Lie cobracket — such that its dual
dg: 9" ®g* — g" be Lie bracket and that d, itself be a 1-cocycle of g with values in g ® g.
Then it happens that also g*, the linear dual of g, is a Lie bialgebra on its own. Following
[CP], §2.1.B, we call quasitriangular Lie bialgebra a pair (g,r) such that r € g® g be a
solution of the classical Yang-Baxter equation (CYBE) [ri2,713] + [r12, 723] + [r13,723] = 0
in g®g®g and g be a Lie bialgebra with respect to the cobracket § = 4 defined by
d(x) = [x,r]; the element r is then called r—matrix of g.

If g is a Lie algebra, its universal enveloping algebra U(g) is a Hopf algebra; if, in
addition, g is a Lie bialgebra, then U(g) is in fact a co-Poisson Hopf algebra (cf. [CP],

§6.2.A).
Let g be any Lie algebra: then we call function algebra on the formal group associated to
g, or simply formal group associated to g, the space F[[g]] :== U(g)" linear dual of U(g).

As U(g) is a Hopf algebra, its dual F[[g]] is on its own a formal Hopf algebra (following
[Di], Ch. 1). Note that, if G is a connected algebraic group whose tangent Lie algebra is g,
letting F'[G] be the Hopf algebra of regular functions on G and letting m, be the maximal
ideal of F[G] of functions vanishing at the unit point e € G, the formal Hopf algebra
F[[g]] is nothing but the m.—adic completion of F[G] (cf. [On], Ch. I). When, in addition,
g is a Lie bialgebra, F'[[g]] is in fact a formal Poisson Hopf algebra (cf. [CP], §6.2.A).

1.2 Braidings and quasitriangularity. Let H be a Hopf algebra in a tensor category
(A, ®) (cf. [CP], §5): H is called braided (cf. [Re|, Définition 2) if there exists an algebra
automorphism R of H® H, called braiding operator of H, different from the flip o: H®? —
H®? a®b+ b®a, and such that

RoA=AP
(A ®id) oR = MRy130NRe3 0 (A®id), (id ® A) o R =Rz 0N 0 (id® A)
where A°P is the opposite comultiplication, i. e. A°P(a) = o0 0 A(a), and Ri2, Ri3, and
Moz are the automorphisms of H ® H ® H defined by Ris = R®id, Rz = id ® R,
Ri3 = (O‘@id)O(id@%)o(U@id).
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Finally, when H is, in addition, a Poisson Hopf algebra, we’ll say that it is braided —
as a Poisson Hopf algebra — if it is braided — as a Hopf algebra — by a braiding which
is also an automorphism of Poisson algebra.

If the pair (H,fR) is a braided algebra, it follows from the definition that R satisfies the
quantum Yang-Baxter equation — QYBE in the sequel — in End(H®3), that is

Ri2 0 Rz 0NRa3 = Raz 0 Rz 0NRy9

which implies that, for all n € N the braid group B,, acts on H®", from which one can
also obtain some knot invariants, according to the recipe given in [CP], §15.12.

A Hopf algebra H (in a tensor category) is said to be quasitriangular (cf. [Dr], [CP]) if
there exists an invertible element R € H ® H , called the R—matrix of H, such that

R-A(a)- R = Ad(R)(A(a)) = A% (q)
(A (029 Zd) (R) = Ri3Ro3 , (Zd & A)(R) = Ri3R1o

where ng, R13,R23 € H®3, R12 =R X 1, R23 =1 & R, R13 = (U & Zd)(RQg) =
(id®o)(Ry2) . Then it follows from the identities above that R satisfies the QYBE in H®3

R12R13R23 = R23R13R12 .

Thus, the tensor products of H—modules are endowed with an action of the braid group.
Moreover, it is clear that if (H, R) is quasitriangular, then (H , Ad(R)) is braided.

1.3 The quantum objects. Let A be the category whose objets are the k[[h]]-modules
which are topologically frees and complete in h—adic sense, and the morphisms are the
k[[h]]-linear continuous maps. For all V', W in A, we define V ® W to be the projective

limit of the k[[h]]/(h™)-modules (V/h"V) ®k[[h]}/(h") (W/R™W): this makes A into a

tensor category (see [CP] for further details). After Drinfel’d (cf. [Dr]), we call quantised
universal enveloping algebra — QUEA in the sequel — any Hopf algebra in the category
A whose semiclassical limit (= specialisation at h = 0) is the universal enveloping algebra
of a Lie bialgebra. Similarly, we call quantised formal series Hopf algebra — QFSHA in
the sequel — any Hopf algebra in the category A whose semiclassical limit is the function
algebra of a formal group.

In the sequel, we shall need the following result:

Theorem 1.4. (c¢f. [EK]) Let g be a Lie bialgebra. Then there exists a QUEA Uy(g)
whose semiclassical limit is isomorphic to U(g) ; furthermore, there exists an isomorphism
of k[[h]]-modules Un(g) = U(g)[[h] -

In addition, if g is quasitriangular, with r—matrixz r, then there exists a QUEA Up(g)
as above and an element Ry, € Up(g) ® Un(g) such that (Un(g), Ry) be a quasitriangular

Hopf algebra and Ry, =1+ rh+ O (h?) (with O (h*) € h* - H® H ). O

1.5 The Drinfeld’s functor. Let H be a Hopf algebra over k[[h]]. For all n € N,
define A™: H — H®" by AY :=¢, A!:=id,, and A" := (A ®id§(”_2)) o An~ 1 if
n > 2. For all ordered subset ¥ = {iy,...,ix} C{1,...,n} with iy < --- <, define the
homomorphism js: H®* — H®" by jy(a; ® - ®ag) == b ®@--- @b, with b; :=1
if 1 ¢ ¥ and b;,, = a,, for 1 < m < k; then set Ay := jgo A* . Finally, define
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.....

for all ¥ = {i1,...,ix} C{1,...,n}, with i; <--- <y, define

b= > ()PP Ay (1.1)

Y/Cy

(in particular, dy,.. ) = 0n ). Thanks to the inclusion-exclusion principle, this is equiva-

lent to
AE == Z 52/ (12)
CE

for all ¥ = {i1,...,ix} C{1,...,n} with 43 <--- <. Finally, define
H' :={a€H|d,(a) e "H®" },

a subspace of H which we consider endowed with the induced topology. Then we have
Theorem 1.6. (c¢f. [Dr], §7, ou [G3]) Let H be a Hopf algebra in the category A. Then
H' is a QFSHA. Moreover, if H = Up(g) is a QUEA, with U(g) as semiclassical limit,
then the semiclassical limit of Up(g)’ is F[[g*]. O

§ 2. The main results

From the technical point of view, the main result of this paper concerns the general
framework of quasitriangular Hopf algebras:

Theorem 2.1. Let H be a quasitriangular Hopf algebra in the category A, and let R be
its R—matriz. Then, the inner automorphism Ad(R): H ® H — H ® H restricts to an

automorphism of H' ® H', and the pair (H’, Ad(R)|H,®H,) is a braided Hopf algebra in
the category A. OJ

The proof of this theorem will be given in section 3. Nevertheless, we can already get
out of it as a consequence the main result announced by the title and in the introduction,
which gives us a geometrical interpretation of the classical r—matrix:

Theorem 2.2. Let g be a quasitriangular Lie bialgebra. Then the topological Poisson
Hopf algebra F|[[g*]] is braided. Moreover, there exists a quantisation of F[[g*]] which is
a braided Hopf algebra whose braiding operator specialises into that of F[[g*]].

Proof. Let r be the r—matrix of g. By Theorem 1.4, there exists a quasitriangular QUEA
(Un(g), Ry) whose semiclassical limit is exactly (U(g), r): that is, Ux(g)/hUs(g) = U(g)
and (R—1)/h = rmod hUy(g)®?; and by Theorem 1.6, the semiclassical limit of Uy (g)’ is

F[lg*]]. Let Ry := Ad(Ry): then Theorem 2.1 ensures that (Uh(g) g %h‘Uh(g)’(X)Uh(g)’)

is a braided Hopf algebra, hence its semiclassical limit (F [[g*]], (

%h|Uh(g)/®Uh(9)/) h=0
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is braided as well. Furthermore, as fRj, is an algebra automorphism and the Poisson bracket
of F[[g*]] is given by {a,b} = ([a,ﬁ]/h)|hzo for all a, b€ F[[g*]] and o, 8 € Up(g)  such
that a|p—0 = a, Blp=0 = b, we have that (%h‘Uh(g),@)Uh(g),) ‘ is also an automorphism

h=0
of Poisson algebra. [J

The theorem above gives a geometrical interpretation of the r—matrix of a quasitrian-
gular Lie bialgebra. This very result had been proved for g = s[(2,k) by Reshetikhin
(cf. [Re]), and generalised to the case when g is Kac-Moody of finite type (cf. [G1], where
a more precise analysis is carried on) or affine type (cf. [G2]) by the first author.

Theorem 2.2 has also an important consequence. Let g and g* be as above, let R
be the braiding of F[[g*]], and let ¢ be the (unique) maximal ideal of F[[g* & g*]] =
F[lg*]] ® F[[g*]] (topological tensor product, following [Di], Ch. 1). Now, fR is an alge-
bra automorphism, hence PR(e) = ¢, and R induces an automorphism of vector space
R: e / e e / ¢2; in addition, e / ¢2 2 g @ g, and since M is also an automorphism of Pois-
son algebra, one has that 9 is a Lie algebra automorphism of g &g = ¢ / ¢2; the other
properties of the braiding Y& make so that %R have other corresponding properties. Finally,
the dual R : g" D gt — gFd g is a Lie coalgebra automorphism of g* & g*, enjoying
many other properties dual of those of SR. In particular, SR, R and R are solutions of the
QYBE, whence there is an action of the braid group B, on F[[g* & g*]]®", on (g & g)*",
and on (g* @ g*)®" (n € N), and from that one can obtain knot invariants (following [CP],
§15.12). Now, such automorphisms of g@® g and of g*@® g* have been introduced in [WX],
§9, related to the so-called ”"global R-matrix”, which also yields a geometrical interpreta-

tion of the classical r—matrix: comparing our results with those of [WX], as well as the
functoriality properties of our construction, will be the matter of a forthcoming article.

§ 3. Proof of theorem 2.1

In this section (H, R) will be a quasitriangular Hopf algebra as in the statement of
Theorem 2.1. We want to study the adjoint action of R on H ® H, where the latter is

endowed with ite natural structure of Hopf algebra; we denote by A its coproduct, defined
by A := s930(A®idy Ridy)o(idy @A) where sa3 denotes the flip in the positions 2 and
3. We’ll denote also I := 1®1 the unit in H® H. After our definition of tensor product in

A, we have (H ® H)/ = H'® H'. Our goal is to show that, although R do not necessarily

belong to (H ® H)/, its adjoint action a +— R-a-R~! leaves stable (H ® H)/ =H ®H'.
First of all set, for ¥ = {i1,...,ix} C{1,...,n}, always with i1 < --- <y,

Ry := Roj, —1,2i, R2iy—1.2i, 4 -  Roiy—1,2i, Roig—1.2i), - Roiy ,—1,2i, 20 —1,24, - - Roip—1,2i,

(product of k? terms) where R; ; := j, ;,(R), defining j, .,: H® H — H®?" as before.

We shall always write |X| for the cardinality of ¥ (here |X| = k).

Lemma 3.1. In (H® H)®n, for all © C {1,...,n}, we have: Asg(R)= Ry .
Proof. With no loss of generality, we’ll prove the result for X={1,...,n}, i.e.
A{1 ..... ny(R) =R,y =Rion-Rion2---Rio-R3on-Rop32 -Ropn_12n Rop_12 .
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The result is evident at rank n = 1. Assume it be true at rank n, and prove it at rank
n + 1; by definition of A and by the properties of the R—matrix we have

Ag,.ms(R) = <A ® idH@Hm_l) (Aq,..ny(R)) = (A ® ’idH@H@n_l) (Rg1,...m})
— s53(A® @'d;??”)(idH QA® z’dl‘?(?”*?))(m,% - Rys- Rsg Ron_12)
=s593(A® idEQ”) (Rign+1- - RigRi2 - RizRao-- RopsRon2) =
= 823(R12nt2R2ony2 - R1aRoaR1 3R 3+  R54R5 3+ Rany1,4R2ny1,3)
= RionyoR3ont2- - RiaR34-RioR32---R54-Rs2-- Ropy1,4Rony1,2

=Rioni2- RiaR12R39pn42 " R34R32  Rs 4R52 -+ Ropy1,4Rony1,2
=R, ny1y, qed. O

From now on we shall use the notation C} := (2) for all a, b€ N.
Lemma 3.2. For all a € (H® H),, and for all set ¥ such that |X| > i, we have

As@) = > )PPl o As(a) + O,

sCs, [$<i

Proof. 1t is enough to prove the claim for ¥ = {1,...,n}, with n > i. Due to (1.2), we
have

Agmy@)= Y ds(a) = > 5s.(a) + O(hi+1)

SC{L,...n} £C{L,..n}, [S]<i

= Z (_1)|i|—|2’|AE/(a)+O(hi+1)

SC{1,...n}, [S|<i =C

= Z As(a) Z (_1)Ii|—\2’| +0(hi )

2C{l,...,n}, |2|<i $ICE, BI<i

- S As@E)TFle T o), qed O
S C{l,...,n}, |2|<i

Before going on with the main result, we need still another minor technical fact about
the binomial coefficients: one can easily prove it using the formal series expansion of

(1-X)""* namely (1-X) " =S oF, X*F.
k=0

Lemma 3.3. Let r, s, t € N be such that r < t. Then we have the following relations
(where we set C :=0 if v>u):
t

(@) Y (D'CLCi==(1", B Y (=)0 Cf=0. O
d=0 d=0

Finally, here is the main result of this section:
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Proposition 3.4. For all a € (H@H)/, we have RaR™' € (H® H)/.

Proof. As we have to show that Ra R~ belongs to (H ®H )/, we have to consider the
terms 0,, (R a R_l), n € N. For this we go and re-write d;1,.. n} (Ra R_l) by using Lemma

3.1 and the fact that A and more in general A{il ir}s for k < n, are algebra morphisms;

.....

then 61,y (RaR™ ) = > (=1)"" " RyAx(a) R
$C{1,...,n}
We shall prove by induction on ¢ that
5(1,..ny (RaR™Y) =0(R*Y)  forall 0<i<n-—1. (%)

In other words, we’ll see that all the terms of the expansion truncated at the order n — 1
are zero, hence 4, (RaR™') = O(h™), whence our claim.

For i = 0, we have, for each ©: Ag(a) = €(a)I®" + O(h) and Ry = I®" + O(h),
and similarly Rg' = I®" + O(h), whence &1, 3 (RaR™!) = Z k(—1)" P e(a) IO+

+O(h) = O(h) , thus the result (%) is true for i = 0.
Let’s assume the result (x) proved for all ¢/ < i. Write the h—adic expansions of Ry

and Ry' in the form Ry =Y ;7 R(E) h* and Rg'=3°°_ Ré_m) h™ . By the previous

o m=0
proposition, we have an approximation of Ay (a) at the order j
- s 5 A
As@) = > (VTR EL Av@ o)
Yy, X<

Then we have the following approximation of 8¢y, .3 (RaR™1):
Sty (RaR7) = 37 37 (-1 PIRY As(@) RE™ W™ 4 O(hH) =

NC{1,...,n} +m<i

=X > ( DR DN VG Vi |E|C|]z||21||z'|R§)Az:’(a)Ré_m)+

J=0 t+m=i—j \sC{1,...n} ¥'Cx
121> [2<5
+ Y )" PRY Ag(a) Ré‘m)> R L O(RT) =

»C{1,...,n}
IZ|<j

l Z 2 ( > (T lzlcijmmll|z’|R§e)Azf(a)Ré_m)+
oo

j=0 ¢ =t 5c{1,..,n} N ©C{1,...,n}
S<j TCE, (B>

+(-)" T RY) A (a) Ré?””) R O (R

We denote (E) the last expression in brackets, and we’ll show that this expression is
zero, whence 4, (RaR™') = O(h'*!).

Let’s look first at the terms corresponding to ¢ +m = 0, that is j = ¢. Then we find
back d0¢1,... n}(a), which is in O(h”l) by assumption. Therefore, by now on in the sequel
of the computation we assume ¢+ m > 0.
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Consider first how the terms Rg) and Ré_m) act on (H® H )/ o (respectively on the
left and on the right) for ¢+ m fixed (and positive), say £ +m =S

Taking the truncated expansion of each R; ; which occurs in Ry, we see that Rg) and

Réﬁm) are sums of products of at most ¢ and m terms respectively, each one acting on
® ~ _
at most two tensor of (H ® H), ", We re-write > Rg) Ay (a) Ré ™) Yy gathering
l+m=S
®
together the terms of the sum which act on the same factors of (H ®H )/ ", we'll denote
the set of positions of this factors by .

Now, if 7 belongs to X", in the identification (H @ H)®" = H®2" (such as we chose it to
define Ry, ) the index i corresponds to the pair (2 —1,2i) ; but then Ry, and Ry, 1 and then
also each Rg) and each Ré_m), may act non-trivially on the i-th factor of Axy(a) only if
one of 2i—1 and 2i (or even both of them) occurs in the explicit Written expression of Ry,

(in H®?"), hence only if i € ¥: thus ¥” C ¥. Then we set > R AZ/( )Ré_m) =

l+m=S
S
zuzczA(E')E ().

Now consider 3 D Y. From the very definition we have Rs = Rg+.A, where A is a sum

of terms which contain factors R2(i311,2 ; with {4,7} € 3 to see this, it is enough to expand
every factor R, p in Rs as Ry = 192"+ O(h) . Similarly, we have also Rg) = Rg) + A,
and similarly Ré_m) = Ré_m) + A” . This implies that A(ES,,) 5.5 (a) = A;S,,)’Eyz,(a) , and
so the A(ES,,)’&E,(G) do not depend on ¥ ; then we write

S RYAs(@)RE™ = Y AP ().

l+m=5S $rCE

In the sequel we re-write (E) using the A(ES,?E,,(Q). In the following we’ll denote by
dxrcy the function whose value is 1 if 3" C ¥ and 0 if not.
Then we obtain a new expression for d;1 . .y (RaR_l) , namely

5{ ) ’n} RaR Z Z ( Z (_1)n—|2|( )] I='] C|JE||21| X
7n}

7=0 y»rcqa,... »C{1,...,n}
I=<j YCE, [Z]>]
x Y AL (a) )N Al (a) >h L O(htY) =
E//CE E//CZI
1—1
VDM D AR
=0 yrcq,.n} £ C{1,...,n}
12 |<j
n—|X >/ > n—|%’ 7
x ( DG e Ca by e A o Vi '52“g2'> +O0(n1) .
2C{1,...,n}

S'CE, BCE, [5]>5



BRAIDINGS OF POISSON GROUPS WITH QUASITRIANGULAR DUAL 9

We denote (E,)z' -
Y, with ‘Z’| <j, we set

the new expression in brackets; in other words, for fixed ¥’ and

n—|% j—| %’ j— |’ n—|%’
(B s = G ) Kt O ) E oA 5 DS es?

2C{1,...,n}
YCE, BCE, 2>

(by the way, we remark that this is a purely combinatorial expression); we shall show that
this expression is zero when ¥’ and ¥’ are such that |E’ U E”‘ <j—i+ ‘Z’| and ‘E” <j.
In force of the following lemma, this will be enough to prove Proposition 3.4.
Lemma 3.5.

(a) We have j <i and i <n—1, hence j <n—2.

(b) For all S > 0, in the expression £+Z—S Rg) Asi(a) Ré_m) = ZHZC:ZA(ZS,?E”(G)

we have that A(ZS,?E,,(CL) =0 for all X', ¥ such that | US| >S5+ |¥|.

Proof. The first part of the statement is trivial; to prove the second, we study the adjoint
action of Ry on (H ® H) on

First of all, on k - I®™ the action of these elements gives a zero term because one gets
the term at the order S of the h-adic expansion of Ry - Ry’ =1 (for S > 0).

Second, let us consider ¥ C {1,...,n}, and let us study the action on (H ® H)y, =

Gt ((H ® H)®|E|> (C (H ® H)®n ). We know that Ry is a product of |E|2 terms of type

Rqyp, with a,b € { 2i—1,25 | i,] €Y } ; so let’s analyse what happens when one computes
the product P:= Ry -x-Ry' if 2 € (H®H)E.

Consider the rightmost factor R, : if a,b & { 27—1,25 |j ey’ } , then when computing
P one gets P:= RyxzRy' = R, Ry R, R7' = R,z R]' (where R, := Re R ).
Similarly, moving further on from right to left along Ry one can discard all factors R, 4

of this type, namely those such that c,d ¢ {Zj - 1,25 }j ey } Thus the first factor
whose adjoint action is non-trivial will be necessarily of type R;; with one of the two

indices belonging to { 25 —1,2j ‘ jey } , say for instance a. Notice that the new index
a (€ {1,2,...,2n — 1,2n}) — which "marks” a tensor factor in H®?" — corresponds

to a new index jz (€ {1,...,n}) — marking a tensor factor of (H ® H) @™ So for the
following factors — i.e. on the left of R; ; — one has to repeat the same analysis, but with

the set {2j — 1,25 |j e YU {ja}} instead of {2j - 1,25 ‘j e Y/ }; therefore, as R; p
might act in non-trivial way on at most ’Z’ | factors of (H ®H ) ®n, similarly the factor
which is the closest on its left may act in a non-trivial way on at most ‘E’ ’ + 1 factors.
The upset is that the adjoint action of Ry is non-trivial on at most ‘Z’ | + ‘E! factors of
(HoH)"

Now consider the different terms Rg) and Ré_m), with £ +m = 5, and study the
products Rg) X Ré_m) , with = € (H ® H)y, . We already know that Rg) and Ré_m)
are sums of products, denoted P, and P_ , of at most £ and m terms respectively, of type
Ri(’Ji-k) ; the terms A(E€?E,,(a) then are nothing but sums of terms of type Py Asy(a)P_,



10 FABIO GAVARINI, GILLES HALBOUT

where in addition the products P, and P_ have their ”positions” in ¥”. Now, since

each P, and each P_ is a product of at most ¢ and m factors R,L-(jk) , one can refine the
previous argument. Consider only the term at the order S of the h—adic expansion of
P:=RyxRy' = RyR.px R} R7' = R,z R': whenever there are factors of type

Ré’kb) or R for fixed a, b — not belonging to {2]' - 1,25 ‘j € Z’} — which appear

a,b
in Rg) or Ré_m) , for some ¢ or m, the total contribution of all these terms in the sum

> Rg) xRéﬁm) will be zero (this follows from the fact that R, Rop2 R, l} R =
@—l—m:S I

R,z R7'). In addition, since now we are dealing only with S factors in total, we conclude
that A%, (a) =0 if [2'US"|>S+ 2. O

Now we shall compute (E’ )2' s~ Thanks to the previous remark, we can limit ourselves
to consider the pairs (X/,X") such that ‘E’UZ”| <i—j+m+ !Z" <i—j4+j=i<n-—1.
Then one can always find at least two ¥ C {1,...,n} such that |X| > j and ¥'UY" C X
which make us sure that there will always be at least two terms in the calculation which is
to follow (such a condition will guarantee the vanishing of the expression (E’ )2/ s ). We

distinguish three cases:

(I) If X" C 3, then the expression (E’)E,’X,, becomes
X _ n—|X| =12 ~i—12 n—|%’|
(B Vg = 2 DT O AL + (1)
2C{1,...,n}
SCE, (]

Gathering together the ¥’s which share the same cardinality d, a simple computation gives

n
—d i— || =] d—|%’ —|x
(B 1)g g = > (D" (=1 PP, com 4 (-
d=j+1

Now, this last expression is zero by Lemma 3.3, for it corresponds to a sum of type

t t

> ()G O+ () = Y (—)TTTRCE CF + (-1 (where € =0 if
k=r+1 k=0
v>wu) with r, ¢t € Ny and r < t: inourcasewesett:n—@", r:j—‘2’| and
k=d— ‘Z’| ; one verifies that one has just j — ’Z’| <n-— ‘E” because j < n.

(II) If " ¢ % and |S'UY"| > j, then the expression (E') becomes

E/’E//
: _ n—|%| =2 A=
(El : 2)2’,2” - Z (_1) (_1>J C|E|—1—‘Z’| .
»C{1,...,n}
Sun’Cce

Gathering together the 3’s which share the same cardinality d, a simple computation gives

n

(E' : 2) = Z (_1)”—01 (_1)j—|2/| Vol ST e

% d—1—|%'| Yn—|2/us|
d=|x/us|

Again, the last expression is zero thanks to Lemma 3.3, for it corresponds to a sum of
t
type 3 (—1)FF 1o CF with r, ¢, s € Ni and r <t: in our case we set
k=0
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t=n—|YUY|, r=j—|¥], s=|2UL|-|¥| -1 and k =d—|%'UL"|; then one
verifies that j—‘E” <n—|2" for j <n and |E’UZ”‘—|Z"—120 since ¥ ¢ /.

(IT1) If ¥” ¢ ¥’ and !Z’ U Z”‘ < 7, then the expression (E')E, s becomes

) _ =X == =2
T T LI ) i Te AT
»C{1,...,n}
SUR’CE, [2]>)

Gathering together the >’s which share the same cardinality d, a simple computation gives
n

’ _ n—d F=I1S | =12 d—|z'us”|
(E : 3)2’72” - Z (_]‘) (_]‘) Cd—l—‘2’| CTL—|E’UE”| .
d=j+1
But again the last expression is zero because of Lemma 3.3, for it corresponds to a sum
t t
of type > R opof = Y ()R ey, CF  (where €U = 0 if
k=j+1—|2/Us”| k=0
v>u) with 7, ¢, s € Ni and r < t: here again we set t =n — ‘E’UZ”‘, r=j— ‘Z’|,
s = ‘Z’ U Z”‘ — !E" —1 and k =d— ‘E’ U E”|; one has, always for the same reasons,
j—|¥|<n—|¥| and |¥'UT"| - |¥|-1>0.

Therefore, one has always (E’ >2' s =0, whence (E) =0, which ends the proof. [J
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