An infinitely rigid mass is considered, which moves on a plane under the action of proper forces, within a closed region delimited by an infinitely massive and rigid circular barrier. A suitably amended tracking problem for a class of periodic trajectories, involving an infinite number of nonsmooth impacts between the mass and the barrier, is formally stated and solved.

Menini, L., & Tornambè, A. (2001). Asymptotic tracking of periodic trajectories for a simple mechanical system subject to nonsmooth impacts. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 46(7), 1122-1126 [10.1109/9.935068].

Asymptotic tracking of periodic trajectories for a simple mechanical system subject to nonsmooth impacts

Menini, L.;Tornambè, A.
2001

Abstract

An infinitely rigid mass is considered, which moves on a plane under the action of proper forces, within a closed region delimited by an infinitely massive and rigid circular barrier. A suitably amended tracking problem for a class of periodic trajectories, involving an infinite number of nonsmooth impacts between the mass and the barrier, is formally stated and solved.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/04 - Automatica
English
Birkhoff billiard; Liapunov methods; Mechanical systems; Nonsmooth impact; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering
Menini, L., & Tornambè, A. (2001). Asymptotic tracking of periodic trajectories for a simple mechanical system subject to nonsmooth impacts. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 46(7), 1122-1126 [10.1109/9.935068].
Menini, L; Tornambè, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/193603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 67
social impact