We present a fully general derivation of the Laplace–Young formula and discuss the interplay between the intrinsic surface geometry and the extrinsic one ensuing from the immersion of the surface in the ordinary Euclidean three-dimensional space. We prove that the (reversible) work done in a general surface deformation can be expressed in terms of the surface stress tensor and the variation of the intrinsic surface metric.

Rossi, G., Testa, M. (2014). On the geometry of surface stress. THE JOURNAL OF CHEMICAL PHYSICS, 140, 044702 [http://dx.doi.org/10.1063/1.486214].

On the geometry of surface stress

ROSSI, GIANCARLO;
2014-01-01

Abstract

We present a fully general derivation of the Laplace–Young formula and discuss the interplay between the intrinsic surface geometry and the extrinsic one ensuing from the immersion of the surface in the ordinary Euclidean three-dimensional space. We prove that the (reversible) work done in a general surface deformation can be expressed in terms of the surface stress tensor and the variation of the intrinsic surface metric.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Con Impact Factor ISI
Stress Tensor
Rossi, G., Testa, M. (2014). On the geometry of surface stress. THE JOURNAL OF CHEMICAL PHYSICS, 140, 044702 [http://dx.doi.org/10.1063/1.486214].
Rossi, G; Testa, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
surf_stress_rev.pdf

accesso aperto

Descrizione: pdf
Dimensione 195.62 kB
Formato Adobe PDF
195.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/98730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact