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Abstract

We present a fully general derivation of the Laplace–Young for-
mula and discuss the interplay between the intrinsic surface geometry
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ordinary euclidean three-dimensional space. We prove that the (re-
versible) work done in a general surface deformation can be expressed
in terms of the surface stress tensor and the variation of the intrinsic
surface metric.
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1 Introduction

The notion of surface tension in fluids dates back to the seminal writings of
Laplace [1] and Young [2] where the famous formula relating the difference of
the external and internal hydrostatic pressure of a spherical surface to the prod-
uct of the mean curvature times the surface tension was first derived (see below
eq. (3.13)).

The concept of surface stress (or interface stress) is of special importance for
applications in the interdisciplinary areas of material science, physical chemistry
and continuum mechanics [3]-[11] and it has been the subject of extensive studies
since when it was introduced by Gibbs [12] 1. A far for complete list of papers and
books describing recent investigations in the field can be found in refs. from [13]
to [25].

Despite this long history there seem to be still debatable issues and open
questions on the subject, like the validity of the Shuttleworth [13] equation or the
quest for an expression of the surface stress in terms of the microscopic degrees of
freedom of the system (for instance, of the kind one can write for the bulk stress
tensor, see [26, 27, 28, 29] and references therein).

In this paper we discuss some geometrical aspects of the notion of surface
stress tensor, γαβ (α, β = 1, 2), associated to an arbitrarily shaped interfacial
surface. Using methods borrowed from Riemannian geometry, that represents
the natural tool to deal with a curved two-dimensional manifold embedded in a
three-dimensional (flat) ambient, we derive in full generality a formula that in the
isotropic and homogeneous case reduces to the Laplace–Young relation.

In order to make contact with Thermodynamics we give the expression of the
(reversible) work done in the deformation of a generic two-dimensional interface,
in terms of the surface stress tensor. The result is similar to the celebrated Shut-
tleworth [13] formula with the difference arising when deformations orthogonal to
the surface are allowed (see eq. (4.8)).

The outline of the paper is as follows. In order to make the paper self-contained
we start in sect. 2 by providing an introduction to the geometrical concepts needed
for the present discussion. In sect. 3 we derive the generalized Laplace–Young
formula that reduces to the classical one in the case of isotropic and homogeneous
systems. Contact with Thermodynamics is made in sect. 4 where we provide the
relation between the variation of the (Helmholtz) free energy per unit area under
a surface deformation and the surface stress tensor. A few concluding remarks
can be found in sect. 5. In Supplementary Material for completeness we provide a
derivation of the Stokes theorem in intrinsic coordinates.

1For an interested and well documented summary of its historical development see [13].
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2 Generalities

Let S be a two-dimensional surface embedded in a Euclidean three-dimensional
ambient space, described by the parametric equations

~x ≡ xk(uα)~ek , k = 1, 2, 3 , α = 1, 2 (2.1)

with (u1, u2) ranging in a simply connected set, U [S], and ~ek denoting the or-
thonormal vectors of a cartesian reference frame 2. The two independent vectors

~xα(u) ≡ ∂~x(u)

∂uα
, α = 1, 2 (2.2)

span the tangent plane to S at the point ~x = ~x (u1, u2). The unit normal to S is

~nS =
~x1 ∧ ~x2

|~x1 ∧ ~x2|
. (2.3)

Given a vector ~v tangent to S, eqs. (2.1) and (2.2) provide a correspondence be-
tween its Riemannian contravariant components, vα, in the curvilinear coordinate
system (u1, u2), and its cartesian components, vk, in the ambient euclidean space,
that reads

~v = vk~ek = vα~xα . (2.4)

The embedding of the surface S defined by eq. (2.1) in the euclidean three-
dimensional space induces on S the Riemannian metric, gαβ, given by

gαβ = ~xα · ~xβ . (2.5)

Use of this metric allows to express the scalar product of two vectors tangent to
S in terms of their Riemannian contravariant components in the intrinsic form

~v · ~w = viwi = gαβv
αwβ . (2.6)

2.1 Principal Curvature

Let C be a curve parametrized by ~x(`) with ` its arclength. The tangent vector
~t(`) = d~x(`)/d` has unit length, so that its derivative is orthogonal to ~t. We have
therefore

d~t

d`
= K~n , (2.7)

where the unit vector ~n, orthogonal to ~t, is the so-called principal normal. The
proportionality factor, K ≡ 1/R, defines the curvature at any given point along

2As usual we use upper indices for contravariant components, e.g. ~x = (x1, x2, . . . , xN ).
Contravariant indices are lowered with the help of the metric tensor, gab = (ea, eb) where
{ea, a = 1, 2, . . . , N} is the set of vectors spanning the basis of the vector space. Covariant
components are then defined by the formula xa = gabx

b.
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the curve, with R the curvature radius. If the curve lies in a plane, its principal
normal also lies on it.

With reference to the surface S parametrized by eqs. (2.1), we remark that
any plane Π containing the normal ~nS (see eq. (2.3)) identifies a plane curve, CΠ,
on S called a normal section. Since CΠ is a plane curve, we have

~t(`) =
d~x(`)

d`
= ~xα(u)

duα(`)

d`
≡ ~xα(u)u̇α(`) (2.8)

and eq. (2.7) becomes
d~t

d`
= K~nS , (2.9)

because the normal to CΠ is just ~nS , yielding

K = ~nS ·
d~t

d`
. (2.10)

It is interesting to explicitly compute the derivative of ~t(`) with respect to the
arclength parameter. One gets

d~t(`)

d`
=

d

d`

(
~xα(u)u̇α(`)

)
=

∂2~x(u)

∂uα∂uβ
u̇α(`)u̇β(`) + ~xα(u)üα(`) . (2.11)

Plugging eq. (2.11) into eq. (2.10) and taking into account the orthogonality of ~xα
(and hence of ~t(`)) to ~nS(`), one obtains

K(`) = ~nS(`) ·
( ∂2~x(u)

∂uα∂uβ
u̇α(`)u̇β(`) + ~xα(u)üα(`)

)
=

= ~nS(`) · ∂
2~x(u)

∂uα∂uβ
u̇α(`)u̇β(`) ≡ Kαβ(`)u̇α(`)u̇β(`) , (2.12)

where we have introduced the definition

Kαβ(`) = ~nS(`) · ∂
2~x(u)

∂uα∂uβ
. (2.13)

K(`) is the curvature of the normal section CΠ at the point uα = uα(`), where the
tangent vector has components u̇α(`), α = 1, 2.

Kαβ is a rank two tensor under surface coordinates transformations as it follows
by a direct computation. Indeed, taking the derivative of the identity

~nS(u) · ~xα = 0 , (2.14)

with respect to uβ, we have

(∂β~nS) · ~xα + ~nS(u) · ∂
2~x(u)

∂uα∂uβ
= 0 , (2.15)

4



implying the result
Kαβ(u) = −~xα · ∂β~nS . (2.16)

Eq. (2.13) defines a real symmetric tensor, Kαβ = Kβα, to which one can associate
the two-dimensional eigenvalue problem

Kαβτ(i)
β = kiτ(i)α . (2.17)

The two eigenvalues k1 = 1/R1 and k2 = 1/R2 define the principal curvature radii
R1 and R2 corresponding to the eigenvectors τ(i)α, i = 1, 2, and are the smallest
and the largest curvature radii among all the normal sections, as it follows from
the elementary inequalities k(2)||χ||2 ≤ χαKαβχ

β ≤ k(1)||χ||2 valid for any vector,
χα, tangent to S.

From eq. (2.17) and the symmetry of Kαβ one gets

τ(1)
αKαβτ(2)

β = k2 τ(1)
ατ(2)α = k1 τ(2)

ατ(1)α , (2.18)

which proves the orthogonality relation τ(2)
α τ(1)α = τ(2)

αgαβτ(1)
β = 0 in the met-

ric (2.5) and therefore also when they are considered as vectors in the three-
dimensional ambient space, in accordance with eq. (2.4) 3. The eigenvectors τ(1)

and τ(2) obey the completeness relation

τ(1)
α τ(1)

β + τ(2)
α τ(2)

β = gαβ , (2.19)

as can be checked by taking the scalar product of eq. (2.19) with τ(1) and τ(2).
From eqs. (2.17) and (2.19) one obtains the well known geometrical result

Tr[K] ≡ gαβKαβ =
1

R1
+

1

R2
. (2.20)

3 The Laplace–Young formula

3.1 The general case

The description of surface forces requires introducing the two-dimensional (surface)
stress tensor γαβ in analogy with what is done in the three-dimensional bulk when
the stress tensor, τik, i, k = 1, 2, 3, is introduced to describe volume forces [30].

Let SC be a surface separating two media bounded by the curve C with nβ the
components of the unit vector orthogonal to C, tangent to SC and directed towards
the interior of C. The force per unit length along C is given by the formula

fα = γαβnβ . (3.1)

This equation should be regarded as the definition of the surface stress tensor γαβ.
Thus γαβ represents the α component of the force per unit length exerted on a

3In the degenerate case k1 = k2 the corresponding two eigenvectors can always be
orthogonalized.
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line element whose normal (lying on the tangent plane to the surface) is nβ. The
total force exerted on the interior of the curve C limiting SC is

~F (C) =

∮
C
~xαγ

αβnβ d` . (3.2)

Using the Stokes theorem in intrinsic coordinates [31] (for which for completeness
we provide a proof in Supplementary Material), one can rewrite eq. (3.2) as a flux
integral over a surface, SC , bounded by C, in the form

~F (C) =

∮
C
~xαγ

αβnβd` =

∫
U(SC)

∂β(~xαγαβ) dσ . (3.3)

The equilibrium condition at the interface of two media takes then the expression∫
U(SC)

(τ
(2)
ik − τ

(1)
ik )nkS dσ =

∫
U(SC)

∂β(~xαγαβ) dσ , (3.4)

where τ
(2)
ik and τ

(1)
ik are the bulk stress tensors computed on the two sides of the

separating surface. Eq. (3.4) leads to the local relation

(τ
(2)
ik − τ

(1)
ik )nkS = ∂β(xαi γαβ) , (3.5)

in agreement with the result derived in a number of papers [9, 10, 24].
Eq. (3.5) can be further elaborated by explicitly performing the derivative

indicated in its r.h.s. One finds in this way

(τ
(2)
ik − τ

(1)
ik )nkS = ∂β(xαi γαβ) =

=
∂2xi

∂uα∂uβ
γαβ + xαi ∂

βγαβ = niSK
αβγαβ + xαi ∇βγαβ , (3.6)

where we have used the fact that, according to eq. (2.13), Kαβ is the component of
the tensor ∂2~x/∂uα∂uβ along ~nS and we have introduced the covariant divergence
of the surface stress tensor ???

∇βγαβ = ∂βγ
αβ + Γαβδγ

δβ + Γββδγ
αδ (3.7)

in terms of Christoffel symbols [32].
Projecting eq. (3.6) along the normal ~nS and on the plane orthogonal to it, we

get the two relations (remember eq. (2.14))

niS(τ
(2)
ik − τ

(1)
ik )nkS = γαβK

αβ , (3.8)

∇βγαβ = 0 . (3.9)

The first equation is the generalization of the equilibrium condition at the interface
in the non homogeneous and isotropic case, i.e. the generalized Laplace–Young
equation. The second says that the tensor γαβ is covariantly constant on the
surface S.

6



3.2 The isotropic and homogeneous case

The classical Laplace–Young formula [1, 2] directly follows from eq. (3.3) in the
case of isotropy and homogeneity. In this situation the surface stress tensor has
the form γαβ = γ gαβ, so the force acting on the surface element dσ becomes

dF i = −
[
niSTr[K]γ + xiα∂

αγ
]
dσ , (3.10)

where we used the relation ???

∇βγαβ = ∇β[γ gαβ] = γ∇βgαβ + gαβ∂βγ = ∂αγ , (3.11)

that follows from ∇βgαβ = 0.
The surface element will be in equilibrium if the force dF i is compensated by

the force due to the (normal) pressure difference, ∆p = p(2)−p(1) of the two media
at the interface, i.e. if

−~nS∆p+ ~nSTr[K]γ + ~xα∂
αγ = 0 . (3.12)

Projecting out the component of this relation along the normal ~nS and on the
plane orthogonal to it, we get the two scalar relations

∆p = Tr[K]γ = γ

(
1

R1
+

1

R2

)
, (3.13)

∂αγ = 0 . (3.14)

The first is the classical Laplace–Young formula, as first formalized in ref. [33],
and the second is the known result that says that the surface tension is a constant
on the surface S.

Naturally eqs. (3.13) and (3.14) are nothing but eqs. (3.8) and (3.9) in the
isotropic and homogeneous limit.

4 Thermodynamic of a deformation

In this section we will consider the work done in a deformation of the equilib-
rium surface, a notion that is of paramount importance for every thermodynamic
application. We start with a brief geometrical introduction.

4.1 Some geometrical considerations

An infinitesimal deformation of S can be described by a first order infinitesimal
vector, δ~x(u), which gives rise to the displaced surface, S ′ described by the de-
formed parametric equations

~x ′(u) = ~x(u) + δ~x(u) . (4.1)
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The infinitesimal vector δ~x(u) can be split in the form

δ~x(u) = ε(u)~nS + ηα(u)~xα . (4.2)

We are interested in computing the metric, g′αβ, of the displaced surface, S ′. One
finds from the definition (2.5)

g′αβ ≈ gαβ + ~xα ·
∂δ~x

∂uβ
+ ~xβ ·

∂δ~x

∂uα
. (4.3)

Since from eq. (4.2) one finds

∂δ~x

∂uβ
= (∂βε(u))~nS + ε(u)∂β~nS + (∂βη

γ(u))~xγ + ηγ(u)∂β~xγ (4.4)

and

~xα ·
∂δ~x

∂uβ
= ε(u)~xα · ∂β~nS + (∂βη

γ(u))~xα · ~xγ + ηγ(u)~xα · ∂β~xγ , (4.5)

one gets (see eq. (2.16) and eq. (20) of Supplementary Material)

~xα ·
∂δ~x

∂uβ
= −ε(u)Kαβ(u) + gαγ∂βη

γ(u) + ηγ(u)Γδβγgδα =

= −ε(u)Kαβ(u) +∇βηα(u) , (4.6)

where ∇β is the covariant derivative ???

∇βηα(u) = gαγ∂βη
γ(u) + ηγ(u)Γδβγgδα . (4.7)

Eq. (4.6) finally yields

δgαβ = g′αβ − gαβ ≈ −2ε(u)Kαβ(u) +∇βηα +∇αηβ . (4.8)

4.2 Work and free energy

We are now ready to compute the work, δW , performed by the surface stress under
the infinitesimal deformation (4.2). Recalling that δW has two contributions,
one from the stretching of the boundary curve, ∂S, and another one from the
“bulk” deformation of S itself, one gets (see the definition (3.1) and eq. (23) of
Supplementary Material)

δW = −
∫
S

[
εKαβγ

αβ + ηα∇βγαβ
]
dσ −

∫
∂S
fαηαd` =

= −
∫
S

[
εKαβγ

αβ + ηα∇βγαβ
]
dσ −

∫
∂S
γαβ ηαnβd` , (4.9)

From the Stokes theorem in intrinsic coordinates [31] (see Appendix), we obtain∫
∂S
γαβηαnβd` = −

∫
S
∇α(γαβηβ)dσ , (4.10)
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with the minus sign due to the orientation of the surface normal n, that in our
convention is directed towards the interior of ∂S. In virtue of eq. (4.10), eq. (4.9)
becomes

δW = −
∫
S

[
εKαβγ

αβ + ηα∇βγαβ
]
dσ +

∫
S
∇β(γαβηα)dσ =

=

∫
S

[
−εKαβγ

αβ + γαβ∇βηα
]
dσ =

1

2

∫
S
δgαβγ

αβdσ , (4.11)

where δgαβ is the variation of the surface metric (eq. (4.8)) under the deforma-
tion (4.2). The final formula

δW =
1

2

∫
S
δgαβγ

αβdσ , (4.12)

is very interesting because it allows us to derive a thermodynamic definition of
surface stress. In fact, under the assumption that the surface deformation (4.1)
is carried out reversibly, one can identify δW with minus the (Helmholtz) free
energy variation, −δA. Recalling eqs. (4) and (5) of Supplementary Material, one
can derive from eq. (4.11) the local equation

− δA

δgαβ
=

1

2

√
|det g| γαβ . (4.13)

If, as it is customary, one introduces the free energy per unit area, a ≡ A/σS , from
eq. (4.13) one obtains

γαβ = − 2√
|det g|

δ(aσS)

δgαβ
= −a gαβ − 2

σS√
| det g|

δa

δgαβ
. (4.14)

This equation is reminiscent of the Shuttleworth formula [13], but not identical
with it. Apart from the trivial fact that eq. (4.14) correctly takes into account
the general tensor nature of the surface stress, the crucial difference is that the
derivative of the free energy per unit area is taken in eq. (4.14) with respect to
the metric tensor gαβ and not with respect to the strain tensor (∇αηβ +∇βηα)/2,
as it is done in ref. [13] and in all the subsequent literature. As it is clear from
eq. (4.8), (variations under the) metric tensor and strain tensor do not coincide,
unless ε(u) = 0.

Two comments are in order here. First of all, we notice that in the case of an
isotropic medium, γαβ = γ gαβ, eq. (4.11) can be written in the form

δWisotropic =

∫
S′
γdσ −

∫
S
γdσ (4.15)

which, in the case of a constant surface stress, γ, across S, becomes

δWisotropic = γ

[∫
S′
dσ −

∫
S
dσ

]
= γ δσS , (4.16)
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δσS being the variation of the area of S, in agreement with the usual definition of
isotropic surface stress.

Secondly we remark that the idea of defining the bulk (three-dimensional)
stress tensor as the response of the free energy under a deformation of the (three-
dimensional) metric was advocated in refs. [28, 34]. In that case, however, it
was shown [29, 35, 36] that derivatives with respect to the (three-dimensional)
deformation tensor and derivatives with respect to the (three-dimensional) ambient
space metrics give identical results.

5 Conclusions

Using elements of Riemannian tensor calculus, we have given a geometrical char-
acterization of the surface stress tensor and rederived the Laplace–Young formula
for an arbitrarily curved interfacial surface.

We have also discussed the expression of the (reversible) work done in a general
surface deformation and we have shown that it is given by a two-dimensional
integral where the surface stress tensor is saturated with the deformation of the
surface intrinsic metric tensor (and not with the strain tensor). This allows us to
derive the equation that relates γαβ to the free energy per unit surface. We find
that this relation differs from the classical Shuttleworth [13] formula because of
the term that takes into account the possibility of a surface deformation in the
direction orthogonal to it.

Physically the difference between eq. (4.14) and the Shuttleworth formula has
to do with the fact that the total (reversible) work done in a generic deformation is
the sum of a term related to the stretching of the surface, and a bulk contribution
originating when the deformation extends in the normal direction. This last bit
is what makes the situation different from the one it is encountered in the case
of the stress tensor [29, 34, 35, 36]. There no out-of-three-dimension deformation
is physically possible and the derivative of the free energy with respect to the
deformation tensor coincide with the derivative with respect to the metric tensor.
In the case of a two-dimensional system embedded in a three-dimensional ambient
space this is not so, as it is clear from eq. (4.8)

As in the case of the bulk stress tensor, one would like to be able to write
an explicit expression of γαβ in terms of the microscopic degrees of freedom of
the system. This is an open and difficult problem still under investigation. The
main difficulty here lies in the fact that it is not clear how the standard notion of
“thermodynamic limit” (N →∞, V = volume→∞ with V/N = fixed) should be
extended (or modified) to discuss the Statistical Mechanics of a surface.
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