A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or activation matrices are included by adding a weighted sum of constraint functions to the least squares reconstruction error. However, the corresponding Lagrange multipliers are computed by the network dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the NMF optimization problem correspond to as many stable steady-state points of the network dynamics. The validity of the proposed approach is verified through several simulation examples concerning both synthetic and real-world datasets for feature extraction and clustering applications.
Costantini, G., Perfetti, R., Todisco, M. (2014). Recurrent neural network for approximate nonnegative matrix factorization. NEUROCOMPUTING, 138, 238-247 [10.1016/j.neucom.2014.02.007].
Recurrent neural network for approximate nonnegative matrix factorization
COSTANTINI, GIOVANNI;
2014-01-01
Abstract
A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or activation matrices are included by adding a weighted sum of constraint functions to the least squares reconstruction error. However, the corresponding Lagrange multipliers are computed by the network dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the NMF optimization problem correspond to as many stable steady-state points of the network dynamics. The validity of the proposed approach is verified through several simulation examples concerning both synthetic and real-world datasets for feature extraction and clustering applications.File | Dimensione | Formato | |
---|---|---|---|
2014-Recurrent neural network for approximate nonnegative matrix factorization.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.