
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Recurrent neural network for approximate nonnegative
matrix factorization

Giovanni Costantini a, Renzo Perfetti b,n, Massimiliano Todisco a

a Department of Electronic Engineering, University of Rome ‘Tor Vergata’, Italy
b Department of Electronic and Information Engineering, University of Perugia, Italy

a r t i c l e i n f o

Article history:
Received 11 July 2013
Received in revised form
30 October 2013
Accepted 2 February 2014
Communicated by L.C. Jain
Available online 17 February 2014

Keywords:
Recurrent neural networks
Lagrangian networks
Nonnegative matrix factorization
Features extraction
Clustering

a b s t r a c t

A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is
presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a
partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or
activation matrices are included by adding a weighted sum of constraint functions to the least squares
reconstruction error. However, the corresponding Lagrange multipliers are computed by the network
dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the
NMF optimization problem correspond to as many stable steady-state points of the network dynamics.
The validity of the proposed approach is verified through several simulation examples concerning both
synthetic and real-world datasets for feature extraction and clustering applications.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The idea of using analogue circuits to solve mathematical
programming problems can be traced back to the works of Pyne
[1] and Dennis [2]. A canonical nonlinear programming circuit was
proposed by Chua and Lin [3], later extended by Wilson [4].
Kennedy and Chua [5] recast the canonical circuit in a neural
network framework and proved the stability. All the networks in
[3–5] are based on the penalty function method, which gives exact
solutions only if the penalty parameter tends to infinity, a condi-
tion impossible to meet in practice. To avoid the penalty functions,
Zhang and Constantinides [6] proposed a Lagrangian approach to
solve quadratic programming (QP) problems with equality con-
straints. The method can be extended to problems including both
equality and inequality constraints converting inequalities into
equalities by introducing slack variables. In addition, bound con-
straints on the variables, often arising in practical problems, can be
treated in the same way at the expense of a huge number of
variables. In the last decades several Lagrange neural networks
have been proposed to solve specific optimization problems,
handling both equality and inequality constraints as well as
bounds on the variables [7–23].

Among the optimization problems of main interest in the
context of machine learning and data, analysis there is nonnega-
tive matrix factorization (NMF) [24]. The problem consists in
finding reduced rank nonnegative factors to approximate a given
nonnegative data matrix. This factorization can be interpreted as a
representation of data using nonnegative basis vectors and non-
negative activation vectors. Like PCA, it can be used to accomplish
the goal of reducing the number of variables required for data
representation, with the additional constraint of non-negativity to
enforce an additive, not subtractive, combination of parts. The idea
of NMF can be traced back to Paatero and Tapper [25]. However,
they were the seminal papers of Lee and Seung [26,27] which
attracted the interest of many researchers. Applications of NMF
have been proposed in diverse fields, e.g. text mining [28],
document clustering [29,30], image reconstruction [31], human
action recognition [32], discovering muscle synergies [33], EEG
classification [34] and music transcription [35,36]. The relation
between NMF and some clustering techniques has been proven
[37,38], and several extensions and variants have been proposed in
the literature [39–42].

Different algorithms can be used to solve the NMF problem. In
particular, the most known are the multiplicative rules [26,27,42],
and projected alternating least squares (ALS) algorithms [39]. With
respect to other dimensionality reduction methods, probably the
most intriguing feature of NMF is the capacity of finding the
underlying parts-based structure of complex data. However, there
is no explicit guarantee in the method to support this property,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.02.007
0925-2312 & 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ39 0755853631.
E-mail addresses: costanti@uniroma2.it (G. Costantini),

renzo.perfetti@unipg.it (R. Perfetti),
massimiliano.todisco@uniroma2.it (M. Todisco).

Neurocomputing 138 (2014) 238–247



Author's personal copy

which can be enforced introducing sparseness constraints as
proposed by Hoyer [43] and Pascual-Montano et al. [44]. Due to
the nonnegativity constraints, sparsity is strictly related to ortho-
gonality among the basis vectors. Vice versa, imposing sparsity on
the activation vectors, we can enforce an holistic representation of
the data.

In the present paper we propose a neural network solver for
the approximate NMF problem. It is a Lagrange programming
neural network, using a projection operator to implement the
nonnegativity constraints. A similar network has been proposed by
the authors to solve convex optimization problems [14,17]. In this
paper it is shown how this approach can properly work in a non-
convex problem as the approximate NMF.

The rest of this paper is organized as follows. In Section 2, the
NMF optimization problem is formulated. In Section 3, the pro-
posed neural network is introduced and illustrated. Section 4
we investigate the network’s dynamic behaviour. Section 5 pre-
sents the simulation results. Finally, some comments conclude the
paper.

2. NMF optimization problem

Let ℜþ denote the set of nonnegative real numbers. Given a
nonnegative matrix VAℜm�n

þ and an integer pomin(m,n), the
NMF problem consists in computing a reduced rank approxima-
tion of V given by the product WH of nonnegative matrices
WAℜm�p

þ and HAℜp�n
þ . This problem can be formulated as the

minimization of the objective function J(W,H)¼ ∣∣WH�V∣∣2 with
non-negativity constraints on W and H. The NMF optimization
problem is not convex, so it admits multiple local minima and the
solution found by iterative algorithms depends on initialization.
Moreover the problem is characterized by an intrinsic invariance,
since the product WH is unchanged by replacing matrices W and
H by the nonnegative matrices WD and D�1H, where D is any
invertible nonnegative matrix; this implies the non-existence of
isolated local minima of the objective function.

The problem formulation is often extended to include auxiliary
constraints on W and/or H, in order to avoid the invariance
problem, limit the number of local minima and enforce some
desired characteristics of the solution. Sparsity of W is sometimes
required to enforce a parts-based decomposition [24,39,43,44];
sparsity of H is required to improve the performance in clustering
applications. It has been shown that imposing L1 normalization on
rows or columns is a straightforward way to enforce sparsity; L1
normalization of nonnegative vectors simply requires a constraint
on the sum of elements. In this paper we take into account NMF
with the following additional constraints: L1 normalization of
columns of W; L1 normalization of rows of H.

The NMF optimization problem, with L1 normalization of W
columns, can be stated as follows:

minimize

JðW;HÞ ¼ jjWH�Vjj2 ð1aÞ

such that

WZ0 ð1bÞ

HZ0 ð1cÞ

jjwjjj1 ¼ ∑
m

i ¼ 1
wij ¼ 1; j¼ 1;…; p ð1dÞ

where wjAℜm
þ denotes the jth column of W.

The Lagrangian function corresponding to problem (1) is [45]:

L¼ JðW;HÞþ ∑
p

j ¼ 1
αj ∑

m

i ¼ 1
wij�1

 !
� ∑

m

i ¼ 1
∑
p

j ¼ 1
λijwij� ∑

p

j ¼ 1
∑
n

k ¼ 1
μjkhjk

ð2Þ
where λij and μjk are the Lagrange multipliers corresponding to
inequality constraints (1b) and (1c), respectively; αj is the Lagrange
multiplier of the jth equality constraint (1d).

The Karush–Khun–Tucker (KKT) first order conditions for the
existence of a local minimizer of problem (1) are the following
[45]:

∂L
∂wij

¼ ∂J
∂wij

þαj�λij ¼ 0 ð3aÞ

∂L
∂hjk

¼ ∂J
∂hjk

�μjk ¼ 0 ð3bÞ

λijZ0 ð3cÞ

μjkZ0 ð3dÞ

λijwij ¼ 0 ð3eÞ

μjkhjk ¼ 0 ð3fÞ

wijZ0 ð3gÞ

hjkZ0 ð3hÞ

∑
m

i ¼ 1
wij�1¼ 0 ð3iÞ

In relations (3) we assume i¼1,…,m, j¼1,…,p, and k¼1,…, n.
Since the objective function (1a) is non-convex, KKT conditions

(3) are only necessary [45].

3. Neural network model

For a convex constrained optimization problem, Lagrangian
duality can be used to obtain the global solution [6,45]. The basic
idea is to find the saddle point of the Lagrangian function, which is
maximized with respect to the Lagrange multipliers (dual vari-
ables) and minimized with respect to the primal variables. Here,
we propose the same strategy to find a (local) solution of non-
convex problem (1). To limit the number of variables, we adopt a
partial dual approach introducing the following reduced Lagran-
gian function:

LðW;H;αÞ ¼ JðW;HÞþ ∑
p

j ¼ 1
αj ∑

m

i ¼ 1
wij�1

 !
ð4Þ

where α¼[α1 … αp]T is the vector of Lagrange multipliers (dual
variables) corresponding to the equality constraints (1d). Constraints
(1b) and (1c) are not included in (4), avoiding p(mþn) additional dual
variables. To fulfill constraints (1b) and (1c), avoiding the drawbacks
of the penalty function approach, we introduce the auxiliary variables
ωij,ηijAℜ, being wij¼P(ωij), hjk¼P(ηjk) and P(.) is the piecewise linear
function defined as follows (Fig. 1):

PðxÞ ¼ 0 if xo0
x if xZ0

(
ð5Þ

Function (5) is a projection operator: the auxiliary variables can
vary in ℜ according to the gradient of the Lagrangian function (4)
while the true variables wij, hjk are confined in ℜþ .

To find a saddle point of the Lagrangian function (4) a dynam-
ical system can be used such that, along a trajectory, function L is

G. Costantini et al. / Neurocomputing 138 (2014) 238–247 239



Author's personal copy

decreasing with each wij and hjk and increasing with each αj.
Taking into account the definition (5), such system can be obtained
by equating the time derivative of each variable to the correspond-
ing component of the negative or positive gradient of L, i.e.

τ _ωij ¼ � ∂L
∂wij

¼ � ∂J
∂wij

�αj; i¼ 1;…;m; j¼ 1;…; p ð6aÞ

τ_ηjk ¼ � ∂L
∂hjk

¼ � ∂J
∂hjk

; j¼ 1;…; p; k¼ 1;…;n ð6bÞ

τ _αj ¼
∂L
∂αj

¼ ∑
m

i ¼ 1
wij�1; j¼ 1;…; p ð6cÞ

τ40 is a time scaling factor.
On the boundary of the feasible region where wij¼0, according

to KKT condition (3a) we can have

∂J
∂wij

þαj ¼ λij40

As a consequence, the time derivative in Eq. (6a) would be a
negative constant, pushing ωij to �1. To guarantee the existence
of finite equilibrium points, a corrective term is added to the right
member of (6a):

τ _ωij ¼ � ∂J
∂wij

�αjþwij–ωij

If wij40, the corrective term is ineffective, being wij¼ωij. When
wij¼0, we obtain the following (finite) value at equilibrium:

ωij ¼ � ∂J
∂wij

þαj

� �
o0

The same conclusion can be drawn for Eq. (6b), taking into
account condition (3b). In conclusion, the state equations of the
proposed neural network are as follows:

τ _ωij ¼ � ∂J
∂wij

�αjþwij–ωij; i¼ 1;…;m; j¼ 1;…;p ð7aÞ

τ_ηjk ¼ � ∂J
∂hjk

þhjk�ηjk; j¼ 1;…; p; k¼ 1;…;n ð7bÞ

τ _αj ¼ ∑
m

i ¼ 1
wij�1; j¼ 1;…; p ð7cÞ

As it will be shown in the following section, locally optimal
solutions of problem (1) correspond to as many stable equilibrium
points of system (7).

Note that Eq. (7c) can be explicitly solved as follows:

αjðtÞ ¼
1
τ

Z t

0
∑
m

k ¼ 1
wkjðt0Þ�1

 !
dt0 þαjð0Þ ð7dÞ

while the gradients of J can be computed using the formulas [15]:

∂J
∂W

¼ 2ðWH�VÞHT ð8aÞ

∂J
∂H

¼ 2WT ðWH�VÞ ð8bÞ

The ijth element of (8a) and (8b) equals ∂J/∂wij and ∂J/∂hjk
respectively.

Lagrange multipliers αj can be interpreted as regularization
parameters trading off reconstruction error and sparsity of basis
vectors. Usually, regularization parameters are empirically selected
or obtained through a time-consuming cross validation process. In
the proposed approach such procedures are avoided, since the
regularization parameters, along with W and H, are computed by
the network during the dynamic evolution. Only the number p of
basis vectors must be selected in advance.

The L1 normalization of rows of H can be imposed replacing
(1d) with the following:

hj
�� ���� ��

1 ¼ ∑
n

k ¼ 1
hjk ¼ 1; j¼ 1;…; p

where hj Aℜn
þ denotes the jth row of H. Normalization of H rows

can be obtained using the reduced Lagrangian function

LðW;H; βÞ ¼ JðW;HÞþ ∑
p

j ¼ 1
βj ∑

n

k ¼ 1
hjk�1

 !
ð9Þ

corresponding to the following state equations:

τ _ωij ¼ � ∂J
∂wij

þwij–ωij; i¼ 1;…;m; j¼ 1;…; p ð10aÞ

τ_ηjk ¼ � ∂J
∂hjk

�βjþhjk–ηjk; j¼ 1;…;p; k¼ 1;…;n ð10bÞ

τ _βj ¼
∂L
∂βj

¼ ∑
n

k ¼ 1
hjk�1; j¼ 1;…; p ð10cÞ

Eqs. (7) and (10) describe the dynamic behavior of the recur-
rent neural network shown in Fig. 2. It is composed of p(mþn)
nonlinear ‘neurons’ whose outputs correspond to the elements of
the unknown matrices. The inputs of each neuron are the negative
derivative of the objective function (1a) and the negative Lagrange
multipliers (for W or H). The neuron consists of an integrator
followed by a limiting nonlinearity, realizing function (5); feed-
back loops realize the terms wij–ωij and hjk–ηjk. Moreover, there are
p linear integrators computing the Lagrange multipliers αj or βj.
The fully recurrent network in Fig. 2 can be used also in alternating
mode, by letting the output of H (W) integrators fixed, so that the
network evolution concerns the W (H) variables only. In this way
the proposed network can be used to naturally implement the well
known alternating least squares (ALS) approach [39], based on the
property that the NMF problem is convex with respect to W or H.

4. Stability of equilibrium points

In this section we present some results on the stability of
equilibrium points of the proposed neural network. To this end, in
the following we briefly review some definitions and theorems on
dynamical systems.

An autonomous dynamical system is described by the differ-
ential equation:

_z¼ f ðzÞ ð11Þ

x 

P (x)

0 

Fig. 1. Piecewise linear function P.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247240



Author's personal copy

where z is the state vector. If f is a C1 function, the solution of (11)
exists for t4t0 and is unique for some given initial condition z(t0)
[46]. Let us introduce some useful definitions.

Definition 1. If f(zn)¼0, zn is called an equilibrium point or fixed
point of system (11). If z(t0)¼zn then z(t)¼zn for t4t0.

Definition 2. An equilibrium point zn of (11) is said stable if for
every neighborhood U of zn there is a neighborhood U1CU such
that every solution x(t) with z(t0)AU1 lies in U for every t4t0.

Definition 3. If in addition to the property of Definition 2, U1 can
be chosen such that limt-1z(t)¼zn for every z(t0)AU1, then zn is
said asymptotically stable.
Often, the stability of equilibrium points can be ascertained

finding a positive definite function, V(x), which decreases along
solution curves of the dynamical system. Such function is called a
Liapunov function, from the name of the Russian mathematician
Liapunov for his work of 1892.

Liapunov direct method [46,47]. Let zn be an equilibrium point of
system (11). Let V(z) be a continuous scalar function defined in a
neighborhood U of zn, differentiable in U�zn and such that:

1. V(zn)¼0 and V(z)40 for zazv.
2. _VðzÞr0 for zAU�zn

then zn is stable.
Furthermore, if

3. _VðzÞo0 for zAU�zn

then zn is asymptotically stable.

Now let us consider the dynamical system described by Eqs.
(7). For ease of notation, we introduce the vector

x¼ ½w11w12…wmph11h12…hpn�T

with Q¼p(mþn) components given by the elements of both W
and H, and vector z such that x¼P(z). The state Eqs. (7a)–(7c)

Fig. 2. Block diagram of proposed neural network.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247 241



Author's personal copy

become:

τ_zi ¼ � ∂J
∂xi

�αiþxi–zi; i¼ 1;…;Q ð12aÞ

τ _αj ¼ ∑
m

r ¼ 1
wrj�1; j¼ 1;…; p ð12bÞ

With an abuse of notation, in Eq. (12a) it is assumed that αi¼αj
if zi corresponds to wrj, 8r; αi¼0 if zi corresponds to an element of
H. We can prove the following results.

Theorem 1. Every local solution of the NMF optimization problem
(1) corresponds to an equilibrium point of dynamical system (12).

Proof. Taking into account the notation introduced above, it is
easy to verify that KKT conditions (3) imply the following con-
straints for every i and j:

xi40;
∂J
∂xi

þαi ¼ 0 ð13aÞ

xi ¼ 0;
∂J
∂xi

þαiZ0 ð13bÞ

∑
m

r ¼ 1
wrj�1¼ 0 ð14Þ

Condition (14) implies _αj ¼ 0 for 8 j. Condition (13a) gives _zi ¼ 0
when zi¼xi (xi40). Condition (13b) implies _zi ¼ 0 when
zi ¼ �ðð∂J=∂xiÞþαiÞr0. ▯

Theorem 2. Every local solution of the NMF optimization problem
(1) corresponds to a stable equilibrium point of dynamical
system (12).

Proof. Let us consider a local solution xn of the underlying
problem (1). According to Theorem 1 there exists an equilibrium
point (zn, αn) of system (12) corresponding to xn. Let

x0i ¼ xi–xin ¼ PðziÞ–Pðzni Þ ð15aÞ

α0j ¼ αj–αj
n ð15bÞ

zni ¼ zi–zin ð15cÞ
From the definition of P(.) it follows:

0rxi�xin

zi�zin
r1; i¼ 1;…;Q ð16Þ

In a neighborhood U of the local minimum xn, we can approx-
imate J(x) using the following Taylor expansion:

JðxÞffi JðxnÞþðx�xnÞT∇JðxnÞþðx�xnÞTAðx�xnÞ
where A¼∇2J(xn) is the Hessian matrix of J at xn. A necessary
condition for xn to be a local minimum of problem (1) is that the
Hessian ∇2L(xn) is positive semidefinite [45]; in the present case of
affine constraints, also the Hessian ∇2J(xn) must be positive
semidefinite. Hence, for xAU,

∇JðxÞ ¼∇JðxnÞþAx0 ) ∂J
∂xi

¼ ∂J
∂xi

� �
xn

þ ∑
Q

j ¼ 1
aijx

0
j ð17Þ

where A¼[aij] is a positive semidefinite matrix. Using (15) and (17)
we can write (we assume τ¼1 without loss of generality):

_z0i ¼ _zi ¼ � ∂J
∂xi
�αiþxi–zi

¼ � ∂J
∂xi

� �
xn

� ∑
Q

j ¼ 1
aijx

0
j�α0i–αi

nþx0i–z
0
iþxi

n–zi
n ð18aÞ

_α0j ¼ _αj ¼ ∑
m

r ¼ 1
w0

rjþ ∑
m

r ¼ 1
wn

rj�1; j¼ 1;…; p ð18bÞ

From equilibrium conditions (13) it follows:

� ∂J
∂xi

� �
xn

�αi
nþxin–zin ¼ 0

∑
m

r ¼ 1
wn

rj�1¼ 0

Hence

_z0i ¼ � ∑
Q

j ¼ 1
aijx

0
j�α0iþx0i–z

0
i; i¼ 1;…;Q ð19aÞ

_α0j ¼ ∑
m

r ¼ 1
w0

rj; j¼ 1;…; p ð19bÞ

Consider the following candidate Liapunov function:

Vðz;αÞ ¼ ∑
Q

i ¼ 1

Z z;i

0
x0iðξÞdξþ

1
2

∑
p

j ¼ 1
α02j ð20Þ

This kind of function has already been used in the stability
analysis of some neural network models for optimization [8,17]. V
is nonnegative as a consequence of (16) and V(zn,αn)¼0. Taking the
time derivative and using (19) we have:

_Vðz;αÞ ¼ ∑
Q

i ¼ 1

∂V
∂z;i

_z0iþ ∑
p

j ¼ 1

∂V
∂α;j

_α0j

¼ ∑
Q

i ¼ 1
x0i � ∑

Q

j ¼ 1
aijx

0
j�α0iþx0i–z

0
i

" #

þ ∑
p

j ¼ 1
α0j ∑

m

r ¼ 1
w0

rj

� �
ð21Þ

Since αi¼0 if xi corresponds to an element of H, it is:

∑
Q

i ¼ 1
α0ix

0
i ¼ ∑

p

j ¼ 1
∑
m

r ¼ 1
α0jw

0
rj

Hence

_Vðz;αÞ ¼ � ∑
Q

i ¼ 1
∑
Q

j ¼ 1
aijx0ix

0
jþ ∑

Q

i ¼ 1
x0iðx0i–z0iÞ ð22Þ

Taking into account (16) and the positive semidefinite character
of A, it follows _Vr0 for 8xAU. Thus the equilibrium point (zn, αn)
is stable. ▯

Corollary. If ∇2J(xn) is positive definite, the equilibrium point (zn, αn)
is asymptotically stable.

Proof. If the Hessian ∇2J(xn) is positive definite the Hessian ∇2L
(xn) is positive definite as well, then xn is a strict local solution
[45]; from (22) it follows _V ¼ 0 if and only if, 8 i, xi0 ¼ 0. Thus the
equilibrium point (zn, αn) is asymptotically stable. ▯

According to Theorem 2 and its corollary, we can say that the
neural network can find every local solution of the NMF problem
(1), provided that the initial state is inside the corresponding
domain of attraction. The presented results do not allow to
exclude that the network dynamics could be non-convergent or
could stop in a point which is not a local minimum. However,
simulation results presented in Section 5, concerning feature
extraction and data clustering tasks, indicate a convergent beha-
viour to near optimal solutions in all cases.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247242



Author's personal copy

Finally, let us consider the alternating mode of operation, when
either W or H integrators outputs are held fixed. Since the
objective functions J(W) and J(H) are quadratic and positive
semidefinite, the network in Fig. 2 becomes a particular case of
the network for quadratic optmization proposed in [17], where
global convergence to an optimal solution has been proved.

5. Experimental results

We have simulated the proposed neural network using ODE23
numerical integration algorithm of Simulink (MathWorks, Inc.),
and tested it on various synthetic and real-world datasets to show
its effectiveness. As concerns feature extraction, we imposed L1

normalization on W columns and we considered three tests: a
synthetic example, the Swimmer dataset and the FERET dataset.

First, we generated a data matrix V¼AB, where A (shown in
Fig. 3a) has seven binary columns and B is a random matrix with
entries between zero and one (Fig. 3b). In Fig. 3d and e we can see
the basis matrix W and the activation matrix H corresponding to
the network steady state. A visual comparison of matrix product
WH (Fig. 3f) with matrix V shows a good agreement. We repeated

Fig. 4. Four samples from the Swimmer dataset.

Fig. 3. Synthetic example of feature extraction: (a) matrix A, (b) matrix B, (c) product V¼AB, (d) and (e) matrices W and H computed by the network, and (f) product WH
approximating V.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247 243



Author's personal copy

the simulation 30 times using different initial conditions for W
and H; the average value of ‖WH�V‖ at steady state was
3.29�10�4 with standard deviation 1.75�10�5.

The Swimmer dataset1 [48] consists of 256 images with size
32�32, each of which depicts a figure with one static part (the
torso) and four moving parts (the limbs). Each moving part has
four different positions. Four of the 256 images are displayed in
Fig. 4. The task here is to extract the 16 limb positions and one
torso position. Firstly, each image was vectorized and stored in one
column of the input matrix V. The component number was set to
p¼20. Each column of W has the same dimensionality as the input
column vectors and thus can be displayed as base images, as
shown in Fig. 5. We found that the network can correctly extract
all the 17 desired features with three duplicates of the torso
(Fig. 5). In Fig. 6 the dynamic network evolution is displayed
assuming τ¼1 ms. In Fig. 6a, the reconstruction error ‖WH�V‖2 is
shown while the 20 sums of column entries of W are shown in
Fig. 6b. The reconstruction error converges to a minimum after 2τ
while the sums of column entries converge to one after 50τ. The
FERET face dataset2 [49] consists of the inner part of 2409 faces
with size 32�32. We normalized the images by dividing the pixel
values by their maximal value 255. The component number was
chosen as p¼55. Fig. 7 shows the resulting base images, which
demonstrates high sparseness in the factorizing matrix W, which
captures nearly all facial parts. The result is similar to others
reported in the literature (see e.g. [50]).

As concerns clustering, we explored two approaches: (1) we
construct the input matrix V by using each data vector as a
column; we force L1 normalization of H rows; after convergence
of neural network dynamics, the index of the maximal value in
each column of H indicates the cluster membership of the
corresponding input vector; (2) as before but with L1 normal-
ization of W columns. After convergence, the H columns represent

Fig. 5. Basis vectors found by the neural network for the Swimmer dataset.

Fig. 6. Dynamic network evolution for the Swimmer dataset (τ¼1 ms):
(a) reconstruction error and (b) sums of W columns.

1 http://www.stanford.edu/�vcs/Papers.html.
2 http://www.nist.gov/itl/iad/ig/colorferet.cfm.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247244



Author's personal copy

a new coding of data vectors which are then clustered using
standard k-means.

To evaluate clustering results, we have adopted a widely
used measurement, called accuracy or purity, which is defined as
follows:

accuracy¼ 1
N

∑
p

k ¼ 1
max

i ¼ 1;:::;p
ni
k ð23Þ

where p is the number of clusters (the rank of NMF decomposi-
tion), nki is the number of samples in the cluster k that belongs to
original class i, and N is the total number of data. Larger accuracy

indicates better clustering results, and value one indicates total
agreement to the ground truth.

We selected some commonly used datasets from the University
of California at Irvine (UCI) repository3 (iris, glass, ecoli, wine and
digit); as concerns the optical handwritten digit database we used
a subset containing “0”, “2”, “4” and “6”. In addition, we con-
sidered the ORL database of faces taken at the AT&T laboratory.4

It consists of 400 grey-scale images of 40 subjects taken at

Fig. 7. Basis vectors found by the neural network for the FERET dataset.

3 www.ics.uci.edu/�mlearn.
4 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247 245



Author's personal copy

different times, with varying facial expressions, lighting conditions
and facial details (glasses/no glasses).

For each dataset, the neural network was simulated 30 times
with different random seeds for W initialization (H is initially
zeroed). For comparison, we considered standard k-means (Lloyd’s
algorithm) and original NMF (multiplicative update rules [27]).
Table 1 shows the mean and standard deviation of the accuracies.
Overall, the network solutions correspond to good clustering
performance. In particular, we obtained the best result with the
iris and ORL datasets using L1 normalization of H rows. As
concerns three datasets (glass, ecoli and wine) the best results
have been obtained through L1 normalization of W columns,
followed by k-means on H columns. Finally, using the digit dataset
the result is the same with both approaches. For sake of compar-
ison with different NMF algorithms, in Table 1 we have included
the purity results of projective NMF (PNMF) for iris, digit and ORL
datasets [40].

To better understand the network dynamics, in Fig. 8 the
transient behaviour is shown for the error ‖WHrV‖2 and the
sums of H rows in the experiment with ecoli dataset.

6. Conclusions

In this paper a neural network model for sparse NMF has been
proposed. It is obtained by exploiting a partial dual Lagrangian
approach. A main feature of the proposed network is the auto-
matic computation of regularization parameters, trading off recon-
struction accuracy and sparsity constraints. As a consequence,
experimental tuning or validation are required only to set up the
number of basis vectors (the rank of the decomposition). Locally
optimal solutions correspond to as many stable equilibrium points
of the neural network dynamics. This result has been proven using
a Liapunov function method. The derivation presented in the
paper proves only local stability; however, extensive simulation
results confirm the robust behavior of the proposed network and
the accuracy of steady state solutions. In particular, clustering
results are consistent with the best state of the art algorithms.
Finally, the proposed approach can be easily developed to take into
account different affine constraints on basis or activation matrices,
in order to enforce different characteristics of computed solution.

References

[1] I.B. Pyne, Linear programming on an electronic analogue computer, Trans. Am.
Inst. Electr. Eng. 75 (1956) 139–143.

[2] J.B. Dennis, Mathematical Programming and Electrical Networks, Chapman &
Hall, London, 1959.

[3] L.O. Chua, G.-N. Lin, Nlinear programming without computation, IEEE Trans.
Circuits Syst. CAS-31 (1984) 182–188.

[4] G. Wilson, Quadratic programming analogs, IEEE Trans. Circuits Syst. CAS-33
(1986) 907–911.

[5] M.P. Kennedy, L.O. Chua, Neural networks for nonlinear programming, IEEE
Trans. Circuits Syst. CAS-35 (1988) 554–562.

[6] S. Zhang, A.G. Constantinides, Lagrange programming neural networks, IEEE
Trans. Circuits Syst. Part II 39 (7) (1992) 441–452.

[7] A. Bouzerdoum, T.R. Pattison, Neural network for quadratic optimization with
bound constraints, IEEE Trans. Neural Networks 4 (2) (1993) 293–304.

[8] M. Forti, A. Tesi, New conditions for global stability of neural networks with
applications to linear and quadratic programming problems, IEEE Trans.
Circuits Syst.—Part I 42 (7) (1995) 354–366.

[9] Y. Xia, A new neural network for solving linear and quadratic programming
problems, IEEE Trans. Neural Networks 7 (6) (1996) 1544–1547.

[10] Y.-H. Chen, S.-C. Fang, Solving convex programming problems with equality
constraints by neural networks, Comput. Math. Appl. 36 (7) (1998) 41–68.

[11] E.K.P. Chong, S Hui, S.H Zak, An analysis of a class of neural networks for
solving linear programming problems, IEEE. Trans. Automat. Control 44 (11)
(1999).

[12] Y. Leung, K.-Z. Chen, Y.-C. Jiao, X.-B. Gao, K.S. Leung, A new gradient-based
neural network for solving linear and quadratic programming problems, IEEE
Trans. Neural Networks 12 (5) (2001) 1074–1083.

[13] Y. Xia, G. Feng, An improved neural network for convex quadratic optimization
with application to real-time beamforming, Neurocomputing 64 (2005)
359–374.

[14] R. Perfetti, E. Ricci, Analog neural network for support vector machine
learning, IEEE Trans. Neural Networks 17 (4) (2006) 1085–1091.

[15] H. Ghasabi-Oskoei, N. Mahdavi-Amiri, An efficient simplified neural network
for solving linear and quadratic programming problems, Appl. Math. Comput.
175 (2006) 452–464.

[16] L. Zou, L. Zhang, A log-sigmoid lagrangian neural network for solving non-
linear programming, in: Proceedings of 8th IEEE ACIS, pp. 427–431, 2007.

[17] G. Costantini, R. Perfetti, M. Todisco, Quasi-Lagrangian neural network for
convex quadratic optimization, IEEE Trans. Neural Networks 19 (10) (2008)
1804–1809.

Table 1
Clustering results (accuracy).

Dataset Classes L1 norm. of H rows L1 norm. of W columnsþk-means k-Means NMF PNMF [40]

iris 3 0.9870.00 0.9770.00 0.8470.10 0.7570.05 0.9770.01
glass 6 0.8070.04 0.8970.01 0.8770.00 0.6270.04 –

ecoli 8 0.7670.01 0.8570.01 0.8270.02 0.6870.02 –

wine 3 0.6670.00 0.7070.00 0.6970.01 0.5770.08 –

digit 4 0.9870.00 0.9870.00 0.9270.11 0.9370.08 0.9870.00
ORL 40 0.7270.02 0.7170.01 0.6970.01 0.4870.01 0.7270.03

Fig. 8. Experiment with ecoli dataset (τ¼1 ms): (a) recontruction error and
(b) sums of H rows.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247246



Author's personal copy

[18] P.-M. Lam, C.S. Leung, J. Sum, A.G. Constantinides, Lagrange programming
neural networks for compressive sampling, in: Proceedings of the 17th
International Conference on Neural Information Processing: Models and
Applications ICONIP'10, Springer-Verlag Berlin, Heidelberg, 2010, pp. 177–184.

[19] X. Hu, C. Sun, B. Zhang, Design of recurrent neural networks for solving
constrained least absolute deviation problems, IEEE Trans. Neural Networks
21 (7) (2010) 1073–1086.

[20] Y. Zhang, Y. Yang, G. Ruan, Performance analysis of gradient neural network
exploited for online time-varying quadratic minimization and equality-
constrained quadratic programming, Neurocomputing 74 (2011) 1710–1719.

[21] M. Mohatram, P. Tewari, N. Latanath, Economic load flow using Lagrange
neural network, in: Proceedings of IEEE SIECPC, April 2011, pp. 1–7.

[22] S.K. Bisoi, G. Devi, A. Rat, Neural networks for nonlinear fractional program-
ming, Int. J. Sci. Eng. Res. 2 (12) (2011) 1–5.

[23] C.S. Leung, J. Sum, H.C. So, A.G. Constantinides, F.K.W. Chan, Lagrange
programming neural networks for time-of-arrival-based source localization,
Neural Comput. Appl. 24 (1) (2014) 109–116 (Springer London). http://link.
springer.com/journal/521.

[24] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, R.J. Plemmons, Algorithms
and applications for approximate nonnegative matrix factorization, Comput.
Stat. Data Anal. 52 (2006) 155–173.

[25] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor
model with optimal utilization of error estimates of data values, Environ-
metrics 5 (1994) 111–126.

[26] D.D. Lee, H.S. Seung, Learning the parts of objects by nonnegative matrix
factorization, Nature 401 (1999) 788–791.

[27] D.D. Lee, H.S. Seung, Algorithms for nonnegative matrix factorization, Adv.
Neural Inf. Process. Syst. 13 (2001) 556–562.

[28] V. Pauca, F. Shahnaz, M. Berry, R. Plemmons, Text mining using non-negative
matrix factorizations, in: Proceedings of the Fourth SIAM International
Conference on Data Mining, April 22–24, Lake BuenaVista, FL, 2004.

[29] V. Pauca, F. Shahnaz, M. Berry, R. Plemmons., Document clustering using
nonnegative matrix factorization, Inf. Process. Manag. 42 (2) (2006) 373–386.

[30] W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix
factorization, in: Procedings of ACM Conference on Research and development
in IR(SIGIR), Toronto, Canada, 2003, pp. 267–273.

[31] J.G. Nagy, Z. Strakos, Enforcing nonnegativity in image reconstruction algo-
rithms, Math. Model. Estim. Imaging 4121 (2000) 182–190.

[32] C. Thurau, V. Hlaváč, Recognizing human actions by their pose, in: D. Cremers,
et al., (Eds.), Visual Motion Analysis, Lecture Notes in Computer Science,
vol. 5604, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 169–192.

[33] A. D’Avella, M.C. Tresch, Modularity in the motor system: decomposition of
muscle patterns as combinations of time-varying synergies, in: Advances in
Neural Information Processing Systems, vol. 14, MIT Press Cambridge MA,
2002, pp. 141–148.

[34] H. Lee, S. Choi, Group nonnegative matrix factorization for EEG classification,
J. Mach. Learn. Res. Workshop Conf. Proc. 5 (2009) 320–327.

[35] P. Smaragdis, J.C. Brown, Non-negative matrix factorization for polyphonic
music transcription, in: Proceedings of IEEE Workshop of Applications of
Signal Processing to Audio and Acoustics, 2003, pp. 177–180.

[36] W. Wang, Y. Luo, J.A. Chambers, S. Sanei, Note onset detection via nonnegative
factorization of magnitude spectrum, EURASIP J. Adv. Signal Process. (2008),
Article ID 231367.

[37] C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix
factorization and spectral clustering, in: Proceedings of the SIAM International
Conference on Data Mining (SDM), 2005, pp. 606–610.

[38] C. Ding, T. Li, W. Peng, On the equivalence between non-negative matrix
factorization and probabilistic latent semantic indexing, in: Computational
Statistics & Data Analysis archive, vol. 52 (8), April, ISSN:0167-9473, 2008.

[39] A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor
Factorizations, Wiley, Chichester, England, 2008.

[40] Z. Yang, E. Oja, Linear and nonlinear projective nonnegative matrix factoriza-
tion, IEEE Trans. Neural Networks 21 (5) (2010) 734–749.

[41] Z. He, S. Xie, R. Zdunek, G. Zhou, A. Cichocki, Symmetric nonnegative matrix
factorization: algorithms and applications to probabilistic clustering, IEEE
Trans. Neural Networks 22 (12) (2011) 2117–2131.

[42] R. Badeau, N. Bertin, E. Vincent, Stability analysis of multiplicative update
algorithms and application to nonnegative matrix factorization, IEEE Trans.
Neural Networks 21 (12) (2010) 1869–1881.

[43] P. Hoyer, Non-negative matrix factorization with sparseness constraints,
J. Mach. Learn. Res. 5 (2004) 1457–1469.

[44] A. Pascual-Montano, J.M. Carazo, K. Kochi, D. Lehmann, R.D. Pascual-Marqui,
Nonsmooth nonnegative matrix factorization (nsNMF), IEEE Trans. Pattern
Anal. Mach. Intell. 28 (3) (2006) 403–415.

[45] R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, Chichester,
1987.

[46] M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear
Algebra, Academic Press, San Diego, 1974.

[47] J. La Salle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.
[48] D. Donoho, V. Stodden, When does non-negative matrix factorization give a

correct decomposition into parts? 16 (2003) 1141–1148Adv. Neural Inf.
Process. Syst. 16 (2003) 1141–1148.

[49] P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology
for face recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 22
(2000) 1090–1104.

[50] Z. Yang, Z. Zhu, E. Oja, Automatic rank determination in projective nonnega-
tive matrix factorization, in: V. Vigneron, et al., (Eds.), LVA/ICA 2010, Lecture
Notes in Computer Science, vol. 6365, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 514–521.

Giovanni Costantini received the electronic engineer-
ing Laurea degree from the University of Rome “La
Sapienza,” Italy, the Ph.D. degree in telecommunication
and microelectronics from the University of Rome “Tor
Vergata,” Italy, and the post-graduate Master degree in
Sound Engineering in 1991, 1999 and 2006 respectively.
He also graduated in piano and electronic music from
the Music Conservatory, Italy. Currently, he is an
Assistant Professor at the University of Rome, “Tor
Vergata." His primary research interests are in the
fields of neural networks, pattern recognition,
algorithms and systems for audio and musical signal
processing.

Renzo Perfetti received the Laurea degree with honors
in electronics engineering from the University of
Ancona, Italy, in 1982, and the Ph.D. degree in informa-
tion and communication engineering from the Univer-
sity of Rome “La Sapienza” in 1992. From 1983 to 1987
he was with the radar division of Selenia, in Rome,
where he was interested in radar systems design and
simulation. From 1987 to 1992 he was with the radio-
communication division of Fondazione U. Bordoni in
Rome. In 1992 he joined the Department of Electronic
and Information Engineering of the University of Per-
ugia, Italy, where he is currently a Full Professor of
electrical engineering. His research interests include

artificial neural networks, pattern recognition, machine learning, audio and
biomedical signal processing.

Massimiliano Todisco received a Laurea degree in
Physics from the University of Rome “La Sapienza,”
Italy, a post-graduate Master degree in Sound Engineer-
ing and a Ph.D. degree in Sensorial and Learning
Systems Engineering from the University of Rome
“Tor Vergata,” Italy. Currently, he is a Research Assistant
at the University of Rome, “Tor Vergata.” His research
interest focus on the areas of artificial intelligence, such
as machine learning and pattern recognition, circuits
and algorithms for signal analysis, processing, and
synthesis, particularly with regard to images, biosignals
and audio signals, speech and music.

G. Costantini et al. / Neurocomputing 138 (2014) 238–247 247


