This study aims to elucidate the processes underlying neuroprotection of kaempferol in models of rotenone-induced acute toxicity. We demonstrate that kaempferol, but not quercetin, myricetin or resveratrol, protects SH-SY5Y cells and primary neurons from rotenone toxicity, as a reduction of caspases cleavage and apoptotic nuclei are observed. Reactive oxygen species (ROS) levels and mitochondrial carbonyls decrease significantly. Mitochondrial network, transmembrane potential and oxygen consumption are also deeply preserved. We demonstrate that the main event responsible for the kaempferol-mediated antiapoptotic and antioxidant effects is the enhancement of mitochondrial turnover by autophagy. Indeed, fluorescence and electron microscopy analyses show an increase of the mitochondrial fission rate and mitochondria-containing autophagosomes. Moreover, the autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) increases during kaempferol treatment and chemical/genetic inhibitors of autophagy abolish kaempferol protective effects. Autophagy affords protection also toward other mitochondrial toxins (1-methyl-4-phenyilpiridinium, paraquat) used to reproduce the typical features of Parkinson's disease (PD), but is inefficient against apoptotic stimuli not directly affecting mitochondria (H2O2, 6-hydroxydopamine, staurosporine). Striatal glutamatergic response of rat brain slices is also preserved by kaempferol, suggesting a more general protection of kaempferol in Parkinson's disease. Overall, the data provide further evidence for kaempferol to be identified as an autophagic enhancer with potential therapeutic capacity.

Filomeni, G., Graziani, I., De Zio, D., Dini, L., Centonze, D., Rotilio, G., et al. (2012). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. NEUROBIOLOGY OF AGING, 33(4), 767-785 [10.1016/j.neurobiolaging.2010.05.021].

Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease

FILOMENI, GIUSEPPE;CENTONZE, DIEGO;ROTILIO, GIUSEPPE;CIRIOLO, MARIA ROSA
2012-04-01

Abstract

This study aims to elucidate the processes underlying neuroprotection of kaempferol in models of rotenone-induced acute toxicity. We demonstrate that kaempferol, but not quercetin, myricetin or resveratrol, protects SH-SY5Y cells and primary neurons from rotenone toxicity, as a reduction of caspases cleavage and apoptotic nuclei are observed. Reactive oxygen species (ROS) levels and mitochondrial carbonyls decrease significantly. Mitochondrial network, transmembrane potential and oxygen consumption are also deeply preserved. We demonstrate that the main event responsible for the kaempferol-mediated antiapoptotic and antioxidant effects is the enhancement of mitochondrial turnover by autophagy. Indeed, fluorescence and electron microscopy analyses show an increase of the mitochondrial fission rate and mitochondria-containing autophagosomes. Moreover, the autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) increases during kaempferol treatment and chemical/genetic inhibitors of autophagy abolish kaempferol protective effects. Autophagy affords protection also toward other mitochondrial toxins (1-methyl-4-phenyilpiridinium, paraquat) used to reproduce the typical features of Parkinson's disease (PD), but is inefficient against apoptotic stimuli not directly affecting mitochondria (H2O2, 6-hydroxydopamine, staurosporine). Striatal glutamatergic response of rat brain slices is also preserved by kaempferol, suggesting a more general protection of kaempferol in Parkinson's disease. Overall, the data provide further evidence for kaempferol to be identified as an autophagic enhancer with potential therapeutic capacity.
apr-2012
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Parkinson’s disease; Kaempferol; Autophagy; Mitochondria; Oxidative stress; Mitochondrial toxins; Neuroprotection
Filomeni, G., Graziani, I., De Zio, D., Dini, L., Centonze, D., Rotilio, G., et al. (2012). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. NEUROBIOLOGY OF AGING, 33(4), 767-785 [10.1016/j.neurobiolaging.2010.05.021].
Filomeni, G; Graziani, I; De Zio, D; Dini, L; Centonze, D; Rotilio, G; Ciriolo, Mr
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/9403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 222
  • ???jsp.display-item.citation.isi??? 187
social impact