We present a general analysis of the bifurcation sequences of periodic orbits in general position of a family of reversible 1:1 resonant Hamiltonian normal forms invariant under $\Z_2\times\Z_2$ symmetry. The rich structure of these classical systems is investigated both with a singularity theory approach and geometric methods. The geometric approach readily allows to find an energy-momentum map describing the phase space structure of each member of the family and a catastrophe map that captures its global features. Quadrature formulas for the actions, periods and rotation number are also provided.

Pucacco, G., Marchesiello, A. (2014). An energy-momentum map for the time-reversal symmetric 1:1 resonance with $\Z_2\times\Z_2$ symmetry. PHYSICA D-NONLINEAR PHENOMENA, 271, 10-18 [doi:10.1016/j.physd.2013.12.009].

An energy-momentum map for the time-reversal symmetric 1:1 resonance with $\Z_2\times\Z_2$ symmetry

PUCACCO, GIUSEPPE;
2014-01-01

Abstract

We present a general analysis of the bifurcation sequences of periodic orbits in general position of a family of reversible 1:1 resonant Hamiltonian normal forms invariant under $\Z_2\times\Z_2$ symmetry. The rich structure of these classical systems is investigated both with a singularity theory approach and geometric methods. The geometric approach readily allows to find an energy-momentum map describing the phase space structure of each member of the family and a catastrophe map that captures its global features. Quadrature formulas for the actions, periods and rotation number are also provided.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Pucacco, G., Marchesiello, A. (2014). An energy-momentum map for the time-reversal symmetric 1:1 resonance with $\Z_2\times\Z_2$ symmetry. PHYSICA D-NONLINEAR PHENOMENA, 271, 10-18 [doi:10.1016/j.physd.2013.12.009].
Pucacco, G; Marchesiello, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PhysicaD2014.pdf

accesso aperto

Descrizione: articolo
Dimensione 490.46 kB
Formato Adobe PDF
490.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/85748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact