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of reversible 1:1 resonantHamiltonian normal forms invariant underZ2×Z2 symmetry. The rich structure
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structure of eachmember of the family and a catastrophemap that captures its global features. Quadrature
formulas for the actions, periods and rotation number are also provided.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Among low-order resonances (see e.g. [1]) the Hamiltonian 1:1
resonance plays a prominent role. A huge amount ofwork has been
devoted to this study leading to advances that almost covered the
subject. We recall the works of Kummer [2], Deprit and cowork-
ers [3–5], Cushman and coworkers [6], Broer and coworkers [7] and
van der Meer [8]. The general treatment of the non-symmetric 1:1
resonance seems to have beendone byCotter [9] in his Ph.D. Thesis.
With motivations mainly coming from applied dynamics [10–14],
our study covers the most general case of a detuned 1:1-resonant
normal form invariant under Z2 × Z2 symmetry by considering
its versal unfolding with three parameters plus detuning [15]. Al-
though the treatment in Kummer’s work [2] is general enough
to accommodate for detuning-like terms, their analysis is not ex-
plicit neither in his work nor in the others cited above. Moreover,
bifurcation sequences in terms of the distinguished parameter
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(the ‘energy’), which are useful when comparing with numerical
or laboratory experiments, are not explicitly given in the available
references.

We exploit threshold values for bifurcations of periodic orbits
as a latch to unlock the general structure of phase–space. The ap-
proach of the paper is based on the use of a regular reduction
[16,17] dividing out the S1 symmetry of the normal form. The re-
duced Hamiltonian is invariant with respect to a second Z2 sym-
metry: we exploit a singular reduction introduced by Hanßmann
and Sommer [18] which allows us to divide out this symmetry.
This trick provides an effective geometric strategy to understand
how the phase–space structure is shaped by all possible combina-
tions of the parameters. As a coronation of the geometric approach,
a two-parameter combination (the ‘catastrophe’ map, [13]) allows
us to represent the general setting in a suitable 2-plane and all pos-
sible bifurcation sequences are clearly represented in the plane of
the values of integrals ofmotion, the energy–momentummap, that
can be plotted to get information on fractions of phase–space vol-
ume pertaining to each stable family. Quadrature formulas for the
actions, periods and rotation number can also be obtained.

The plan of the paper is the following: in Section 2we introduce
the normal form Hamiltonian, discuss its symmetries and the
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corresponding versal deformation; in Section 3 we study the
generic bifurcation sequences of this class of systems; in Section 4
we introduce an energy–momentummap; in Section 5 we discuss
methods to compute actions, periods and rotation number; in
Section 6 we resume the results.

2. The normal form and its versal deformation

On themanifoldwith symplectic structure dp1∧dq1+dp2∧dq2,
we consider the normal-form Hamiltonian [19]

K(p, q) =
N�

j=0

K2j, (1)

with

K0 = 1
2
(p21 + p22 + q21 + q22)

.= E (2)

and higher-order terms satisfying {K0, K2j} = 0, ∀j = 1, . . . ,N .
K(p, q) is assumed to be invariant under the Z2 × Z2 group Γ =
{Id, S1, S2, S1 ◦ S2}, where

S1 : (p1, p2, q1, q2) → (−p1, p2, −q1, q2) (3)
S2 : (p1, p2, q1, q2) → (p1, −p2, q1, −q2) (4)

and the time reversion symmetry (p1, p2, q1, q2) → (−p1, −p2,
q1, q2).

K is characterized by a set of ‘external’ control parameters
(to be distinguished from the ‘internal’ parameters fixed by the
dynamics) that we collectively denote with α

(j)
i . They are certain

non-linear combinations of the parameters of the original physical
model.

At zero order the two natural parameters are the unperturbed
frequencies. In the present settingwe assume they are not far from
unit ratio and, after a rescaling, we assume that the departure from
exact 1:1 ratio is given by the ‘detuning’ parameter δ [20–22]. By
introducing the action-angle variables of K0 with the transforma-
tion

q� =
�
2J� cosφ�, p� =

�
2J� sinφ�, � = 1, 2, (5)

so that K0 = E = J1 + J2, the first order term of the 1:1 resonant
Γ -invariant normal form can be assumed to be [23,24]

K2 = δJ1 + α1J21 + α2J22 + α3J1J2 [2 + cos 2(φ1 − φ2)] , (6)

where for simplicity we have suppressed the upper index in the
first-order parameters α

(1)
i

.= αi, i = 1, 2, 3. In view of its peculiar
role we include δ in the category of internal (or ‘distinguished’ pa-
rameters) [7] and consider δJ1 as a higher-order term with respect
to K0.We observe that the α

(j)
i ’s may in turn depend on δ (as it hap-

pens, for example, in the family of natural systems with elliptical
equipotentials [12]). The higher-order terms K2j(J�, φ�), j > 1, are
homogeneous polynomials of degree 2j in J� depending on angles
only through the combination 2(φ1−φ2). One of theZ2 symmetries
could be broken by adding one further external parameter [25,26,
10].

The canonical variables J�, φ� are themost natural to investigate
the dynamics in a perturbative framework. However, several other
coordinate systems can be used to unveil the aspects of this class
of systems. We list those that will be useful in the following. First
of all we use coordinates ‘adapted to the resonance’ [23]. There are
various ways to do this: in the following we exploit the canonical
transformation [27]





J1 = J
J2 = E − J
ψ = φ2 − φ1
χ = φ2.

(7)

This is used to perform a first reduction of the normal form, since
χ is cyclic and its conjugate action E is the additional integral of
motion. To first order, the reduced Hamiltonian is

Ka = E + α2E
2 + (δ − 2(α2 + α3)E ) J + (α1 + α2 − 2α3)J2

+ α3J(E − J) cos 2ψ. (8)

A further reduction into a planar system, viewing E as a distin-
guished parameter [27] is then obtained via the canonical trans-
formation [2]
�
x =

�
2J cosψ

y =
�
2J sinψ.

(9)

In the subsequent section we work with these coordinates on
which depends the universal deformation.

Following [16], a different path to reduce the symmetry of the
normal form passes through the introduction of the invariants of
the isotropic harmonic oscillator:





I0 = 1
2
(p21 + p22 + q21 + q22) = K0 = E

I1 = p1p2 + q1q2
I2 = q1p2 − q2p1

I3 = 1
2
(p21 − p22 + q21 − q22).

(10)

The set {I0, I1, I2, I3} form a Hilbert basis of the ring of invariant
polynomials and can be used as coordinates system for the reduced
phase space. Their Poisson brackets are given by {Ia, Ib} = 2�abc Ic,
a, b, c = 1, 2, 3. Notice that I0 coincides with the linear part of the
normal form K0 = E , a Casimir of the Poisson structure. There is
one relation between the new coordinates, namely I21 + I22 + I23 =
I20 = E

2, hence the sphere

S =
�
(I1, I2, I3) ∈ R3 : I21 + I22 + I23 = E

2� (11)

is invariant under the flow defined by (1). This provides a (geomet-
ric) second reduction to a one degree of freedom system. The links
between the two sets are given by the ‘Lissajous’ relations [3,4]

I1 = 2
�
J1J2 cosψ = 2

�
J(E − J) cosψ, (12)

I2 = 2
�
J1J2 sinψ = 2

�
J(E − J) sinψ (13)

and

x = I1√
E − I3

, y = I2√
E − I3

. (14)

We remark that the coordinates x, y are shown by Kummer [2] to
be associated with a variant of the stereographic projection of S

on the (I1, I2)-plane.
The ‘normalmodes’ of the systemare expressed in the following

forms:

NM1,NM2 : I1 = I2 = 0, J = 0, E , I3 = ∓E . (15)

The periodic orbits ‘in general position’ are most simply derived
from the fixed points of the Hamiltonian vector field associated
with (8). The family of ‘inclined’ periodic orbits corresponds to the
in-phase oscillations

Ia, Ib : ψ = 0, π, I2 = 0, I3 = I3U , I1 = ±
�

E 2 − I23U , (16)

whereas the family of ‘loop’ periodic orbits corresponds to the
oscillations in quadrature

La, Lb : ψ = ±π/2, I1 = 0, I3 = I3L, I2 = ±
�

E 2 − I23L. (17)
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The expressions of I3U and I3L can be found by solving the condi-
tions for the fixed points of the flow and will be recovered in Sec-
tion 3 relying on geometric arguments.

An important result in the framework of singularity theory
is that of inducing a generic function, defined around a critical
point and depending on several parameters, from a simple germ
and deformation depending on a small set of derived parame-
ters [7,28–32]. In the present case, starting from the general setting
introduced in [7], a versal deformation of the family of systems (1)
is obtained in [15]. The easiest way to perform this further nor-
malization is by exploiting the planar reduction and use the stere-
ographic coordinates (9). Let us consider the resulting normal form

Kb(x, y; E , δ, α
(j)
i ) = E + K2(x, y; E , δ, α

(1)
i ) + · · ·

+ K2N(x, y; E , δ, α
(N)
i ). (18)

It can be shown [7,15] that there exists aZ2×Z2-equivariant trans-
formation which ‘induces’ Kb from the function

F(x, y, uk) = �1x4 + (µ + u3)x2y2 + �2y4 + u1x2 + u2y2, (19)

namely, there exists a diffeomorphism

Φ : R2 × Rm+2 −→ R2 × R3,

(x, y, E , δ, α
(j)
i ) �−→ (x, y, uk) ,

(20)

where m is the dimensionality of the external-parameter space,
such that Kb = F ◦ Φ .

The coefficients uk, k = 1, 2, 3, depend on the internal E , δ

and external α(j)
i parameters and are constructed in an algorithmic

way with an iterative process carried out up to order N . Explicit
expressions for N = 2 are computed in [15]. The coefficients
�1, µ, �2 are otherwise determined by the leading-order terms ‘at
the singularity’ E = δ = 0 and are expressed as the discrete set of
constants

µ = 2(A − 2C)√|(A − 3C)(A − C)| , �1 = A − 3C
|A − 3C | ,

�2 = A − C
|A − C | ,

(21)

where

A .= 1
4
(α1 + α2), B .= 1

2
(α1 − α2), C .= 1

4
α3. (22)

The function F(x, y) provides the phase portraits on either surfaces
of section of the normal form as they are determined by varying the
parameters. Quantitative predictions for bifurcations around the
resonance are given by the series expansion of the u coefficients
in terms of the internal parameters. If we content ourselves with
qualitative aspects, these predictions are already determined by
their first order expressions

u1 = ∆ + (B − 2(A − 3C))E√|A − 3C | ,

u2 = ∆ + (B − 2(A − C))E√|A − C | , u3 = 0,
(23)

where ∆
.= δ/2. We remark that these qualitative aspects can-

not change anymore by the addition of higher-order contributions:
predictions becomeonly quantitativelymore accurate by consider-
ing higher-order terms up to some optimal order [33,34]. The quar-
tic terms of the function F(x, y) (with u3 = 0 and coefficients as in
(21)) compose the germ of this resonance and the quadratic terms
give its universal deformation. Exploiting the transformation (14) in

order to use the invariant polynomials as phase–space variables,
we can therefore adopt the function

KI(I1, I2, I3; E ) = (1 + ∆) E + (A + 2C)E 2 + (BE + ∆)I3
+ C(I21 − I22 ) + (A − 2C)I23 (24)

on the reduced phase space given by the sphere (11) to study
the general behavior of the family. There is a certain degree of
redundancy in the external parameters, however as we see below
there is no strict reason not to keep them all, so we perform
a general analysis of (24) for arbitrary values of the external
parameters A, B, C and the internal parameters ∆ and E .

3. Geometric reduction

3.1. Reduced phase space

The two reflection symmetries now turn into the reversing
symmetries I1 → −I1 and I2 → −I2. Their composition (I1, I2,
I3) → (−I1, −I2, I3) gives a (non-reversing) discrete symmetry of
(24).Weperforma further reduction introducedbyHanßmannand
Sommer [18] to explicitly divide out this symmetry. This is given
by the transformation





X = I21 − I22
Y = 2I1I2
Z = I3

(25)

which turns the sphere (11) into the ‘lemon’ space

L =
�
(X, Y , Z) ∈ R3 : X2 + Y 2 = (E + Z)2 (E − Z)2

�
(26)

with Poisson bracket

{f , g} .= (∇f × ∇g, ∇L)

where (., .) denotes the inner product and L .= X2 + Y 2 −
(E + Z)2 (E − Z)2. The Hamiltonian becomes

KI(X, Z) = (1 + ∆) E + (A + 2C)E 2

+ CX + (BE + ∆)Z + (A − 2C)Z2. (27)

The lemon surface is singular at the points Q1 ≡ (0, 0, −E ) and
Q2 ≡ (0, 0, E ), therefore, whereas the first reduction leading to
(24) is regular, the reduction of the discrete symmetry is singu-
lar [16].

To simplify the following formulae we omit the constant term
from (27) by introducing H

.= KI − (1 + ∆) E − (A + 2C)E 2. In
this way we finally obtain

H (X, Z) = CX + (BE + ∆)Z + (A − 2C)Z2. (28)

Each integral curve of the reduced system defined by (28) is given
by the intersection between L and the surface

{(Z, X) ∈ R2 : H = h} (29)

and tangency points give equilibrium solutions. All information
about bifurcations of periodic orbits in generic position and
stability/transition of normal modes of the original system can be
obtained by the study of the mutual positions of the surfaces H

and L [18]. We can further simplify the approach by exploiting
the fact that, since Y does not enter in (28), the level sets {H = h}
are parabolic cylinders. A tangent plane to L may coincide with
a tangent plane to the parabolic cylinder {K = h} only at points
where Y vanishes: in order to study the existence and nature of the
equilibria configuration of the system, it is then enough to restrict
the analysis to the phase–space section {Y = 0}.

For A �= 2C �= 0, if a tangency point occurs between L and
the surface (29), we have an (isolated) equilibrium for the reduced
system. Moreover, two (degenerate) equilibria are represented by
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Table 1
Starting from the reference case 3.2, we obtain all the complementary cases using
reflection symmetries R1, R2 and R2 ◦ R1. I stands for the identity transformation.
The lower panel shows how the fixed points of the system change under the action
of the reflection symmetries of the twice reduced phase space.

A < 2C A > 2C

C > 0 I R2 ◦ R1
C < 0 R2 R1

Q1 Q2 QL QU

R1 Q2 Q1 �QL �QU
R2 Q1 Q2 QU QL
R2 ◦ R1 Q2 Q1 �QU �QL

the singular points Q1, Q2. The contour C ≡ L ∩ {Y = 0} in the
(Z, X)-plane is given by C− ∪ C+, where

C± ≡
�
(Z, X) ∈ R2 : |Z | ≤ E , X = ±

�
E

2 − Z2�� (30)

and the set P ≡ {H = h} ∩ {Y = 0} corresponds to the parabola

X = 1
C

�
h − (BE + ∆)Z − (A − 2C)Z2� .= P(Z). (31)

The reduced phase space L is invariant under reflection sym-
metries with respect to every coordinate-axes. In particular, the
reduced phase section C is invariant under both reflection trans-
formations

R1 : Z → −Z, R2 : X → −X (32)

and their composition R2 ◦ R1. However the dynamics of the
reduced system are not invariant under these actions. Anyway it is
easy to understand how they operate on the parabola (31). When
acting on P, R1 turns it into its symmetric with respect to the
X-axis. Under the action of R2, P is reflected with respect to the
Z-axis, that is, it reverses its concavity. Finally, the composition
R2 ◦ R1 inverts the concavity of the parabola and then reflects it
with respect to the X-axis (the application of R1 ◦ R2 on P gives
the same result). Thus, we can restrict our analysis to the case in
which the parabola (31) is upward concave and for E = 0 achieves
its minimum point on the negative Z-axis. If we choose a negative
detuning, this corresponds to considerA < 2C and C > 0. Here and
in the followingwe refer to this case as the reference case. Then, by a
simple application of R1, R2 and/or their compositionwe obtain the
bifurcation sequences in the remaining cases (cfr. the upper panel
in Table 1).

On the section C , the two degenerate equilibria are Q1 ≡
(−E , 0) and Q2 ≡ (E , 0). It is always possible to fix h such that
(31) intersects C in one of these points, so that

h = h1
.= E ((A − B − 2C)E − ∆) , (33)

h = h2
.= E ((A + B − 2C)E + ∆) . (34)

Thus, for h = h1 the system stays in the point Q1 and similarly for
h = h2. Comparing with (15) we see that they correspond to the
two normal mode solutions NM1 and NM2. A stability/instability
transition of a normal mode is generally associated with the
bifurcation of new periodic orbits. If this is the case, one or more
tangency points arise between the reduced phase space section C±
and the parabola (31).

3.2. Reference case

We start by introducing the following threshold values for E :

EU1,2
.= ∆

±2(A − 3C) − B
, EL1,2

.= ∆

±2(A − C) − B
(35)

and observing that the parabola (31) has its vertex in

ZV = BE + ∆

2(2C − A)
, XV = 1

C

�
h − (BE + ∆)2

4(2C − A)

�
. (36)

Therefore, in the case A < 2C, C > 0 and ∆ < 0, the parabola is
upward concave with a minimum in ZV which does not depend on
h and is negative for sufficiently small values of E . The tangency
points between P and C can be found by imposing that the
discriminants of the quadratic equations

P(Z) = ±
�
E

2 − Z2� (37)

vanish. Accordingly, there is a tangency on C+,

QU =
�
ZU , E

2 − Z2
U
�
, ZU

.= BE + ∆

2(3C − A)
, (38)

if

h = hU
.= CE

2 + (BE + ∆)2

4(3C − A)
= CE

2 + (3C − A)Z2
U (39)

and a tangency on C−,

QL =
�
ZL, E

2 − Z2
L
�
, ZL

.= BE + ∆

2(C − A)
, (40)

if

h = hL
.= −CE

2 + (BE + ∆)2

4(C − A)
= −CE

2 + (C − A)Z2
L . (41)

Both solutions are subject to the constraints

− E < ZU , ZL < E . (42)

The first result (38) determines a contact point on C+ for E > EU1
if 2(A − 3C) < B ≤ 2(3C − A) and for EU1 < E < EU2 if B >
2(3C−A). These bifurcations correspond to the two inclined orbits
(16) bifurcating from NM1 and annihilating on NM2. The nature
of the fixed point can be assessed by computing its index [2]: the
contact point between P and C+ has index

ind(QU) = sgn[C(3C − A)]. (43)

In the reference case, C > 0 > A/2 therefore ind(QU) > 0 and the
inclined orbits are always stable.

On the lower branch, since it is necessary that A �= C , in order
to proceed we have to distinguish among the three sub-cases: 1.
A < C (�1 = �2 = −1); 2. C < A < 2C (�1 = −1, �2 = 1); 3.
A = C .

3.2.1. A < C
In this sub-case the solution (40) gives a tangency point QL on

C− for E > EL1 if 2(A − C) < B ≤ 2(C − A) and for EL1 < E < EL2
if B > 2(C − A). The contact point between P and C− has index

ind(QL) = sgn[C(A − C)], (44)

therefore, in this sub-case, ind(QL) < 0 and loop orbits are
unstable.

3.2.2. C < A < 2C
The existence and stability analysis of the system in sub-case 2

follows almost the same way: however, the orbit structure turns
out to be quite different since the concavity of the parabola is now
smaller than that of the lower contour. If B ≤ 2(A−3C) no contact
points distinct from Q1 arise: as a consequence, the normal mode
NM2 stays stable for all positive values of E . If 2(A − 3C) < B ≤
2(C − A), one contact point occurs for E > EU1 which corresponds
to the bifurcation of the inclined orbits: they are stable as in the
case before. If 2(C − A) < B ≤ 2(A − C), the conditions for
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tangency with the lower arc at QL are now satisfied for E > EL2
and, if B > 2(A − C), for EL2 < E < EL1. The order of bifurcations
is reversed and, since now ind(QL) > 0, loops are also themselves
stable.

The peculiarity of this sub-case is the ‘global bifurcation’. Let us
consider the critical value of the distinguished parameter

EGB
.= −∆

B
. (45)

Comparing with (38) and (40), we observe that

ZU(EGB) = ZL(EGB) = ZV (EGB) = 0 (46)

and we have a family of parabolas with axis coinciding with the
X-axis. From (33)–(34), at the value of the Hamiltonian

h1 = h2 = hGB = (A − 2C)∆2

B2 , (47)

the parabola passes through both points Q1 and Q2 and a simple
computation shows that its minimum is negative but bigger than
E

2. For h > hGB we have stable inclined as before, for h < hGB we
have loops.

3.2.3. Degenerate sub-case A = C
If A = C, P and the lower arc of C have the same curvature.

Hence, by a simple geometrical argument we see that if ZV �= 0,
it is impossible to have any intersection point different from Q1
between P and C−. Otherwise all the points of the lower arc of
C are tangency points between P and C . Thus if B > 0 (B < 0)
and ∆ < 0 (∆ > 0), for E = EGB we find infinite (non-isolated)
equilibria given by all the points on C−. They correspond to the
circle I1 = 0 on the spherical reduced phase space (11). Only
inclined orbits may bifurcate as isolated periodic orbits and this
happens when a contact between P and C+ does occur.

Remark 1. All cases with ∆ > 0 can be treated as those with ∆ <
0 by a transformation which exchanges the coordinate axes in the
original phase space. On the reduced phase space it corresponds
to the reflection R1. As a consequence, the equilibrium points Q1
and Q2 are exchanged and the parabola P is reflected into its
symmetric with respect to the X-axis.

3.3. Complementary cases

In the previous section we considered the ‘reference’ case A <
2C and C > 0. Nowwe are going to study the dynamics of the sys-
tem in the complementary cases: (a): A < 2C, C < 0; (b): A >
2C, C < 0; (c): A > 2C, C > 0. As observed above, by applying the
transformations (32) and their compositions, the orbital structure
of the system in these cases can be deduced from the analysis of
Section 3.2.

In case (a), the critical value ZV does not change its sign, but the
parabola P turns out to be downward concave. However we can
reverse its concavity by applying R2. Since R2 is a symmetry with
respect to the Z-axis, the two degenerate equilibria are invariant
under its action. On the other hand, if a tangency point occurs
on C+ it is reflected into a tangency point on C− and vice-versa.
This implies that the role of loop and inclined orbits is exchanged
(cfr. the lower panel in Table 1). Namely, the first periodic orbits
to appear from NM1 are now the loop orbits. The corresponding
threshold value for the distinguished parameter is again E = EL1.
The bifurcation of inclined orbits is possible from NM1 in the
case A < 3C for E > EU1 and from NM2 for E > EU2 in the
case 3C < A < 2C . The degenerate case A = 3C is specular
with respect to the case A = C with C > 0. It admits as an
interesting example the family of natural systems with elliptical

equipotentials [12]: inclined are forbidden and only loop orbits
may bifurcate as isolated periodic orbits when a contact between
P and C− occurs.

In case (b), P is upward concave and its maximum lies on the
positive Z-axis. Thus, by applying R1 we can deduce the orbital
structure of the system from the case 3.2. Under the action of R1
the degenerate equilibria of the reduced system are exchanged.
Furthermore, each tangency point between P and C is reflected
into its symmetric with respect to the X-axis (cfr. the lower panel
in Table 1). Namely,

QL ≡ (ZL, XL) → �QL ≡ (−ZL, XL),

QU ≡ (ZU , XU) → �QU ≡ (−ZU , XU).

Anyway, due to the singularity of the transformation (25), to the
points QL and �QL correspond the same two points on the section
I1 = 0 of the sphere (11), that is the same loop orbits for the two
degree of freedom system. Thus loop orbits are invariant under
the action of R1. By a similar argument it follows the invariance
of inclined orbits. However, since the degenerate equilibria on the
reduced phase space are exchanged, if in the case 3.2 a periodic
orbit bifurcates from NM2, in case (b) it bifurcates from NM1 and
vice-versa.

Finally, by applying R2 ◦ R1 we obtain the stability analysis in
case (c) from the case 3.2. The fixed points of the reduced system
change according to the lower panel of Table 1. As a consequence,
the normal modes exchange their roles and the bifurcation order
of inclined and loop orbits is reversed.

3.4. Degenerate cases

There are two degenerate cases corresponding to the parame-
ters values C = 0 and A = 2C . For C = 0 the parabola P de-
generates into a couple of straight lines both parallel to the Z-axis.
Thus, for all positive values of E , the system has only two equilib-
ria represented by the singular points Q1 and Q2: the only periodic
orbits allowed by the two degree of freedom Hamiltonian are the
normal modes. This is not surprising since this case corresponds to
two uncoupled non-linear oscillators.

In the case A = 2C and C > 0, the parabola P degenerates into
the straight line

X = h − BE + ∆

C
Z . (48)

Let us denote it by Y (Z). Its angular coefficient is given by

m .= −BE + ∆

C
. (49)

For ∆ < 0, m is positive if and only if B ≤ 0 or B > 0 and E < EGB.
Thus, for E < EGB, ifY passes through the pointQ1, itmay intersect
the contour phase space C only in one further point on its upper
arc. The corresponding value for h is given by

h = h := − (BE + ∆)E

2C
. (50)

If this is the case, the fixed point Q1 results to be an unstable
equilibrium. A similar argument shows that, ifm < 0 and h = h̄, Y

may intersect C only in one further point on its lower arc. Thus the
critical value E = EGB does not determine a stability/instability
transition for the fixed point Q1. As in the case C < A < 2C ,
it corresponds to a global bifurcation for the system. In fact, for
m = 0, the straight line Y becomes parallel to the X-axis and for
h = 0 it passes through both degenerate fixed points. Hence, for
E = EGB they turn out to be both unstable and their stable and
unstable manifolds coincide.

Thus, the analysis of the nature of the normal mode NM1 for
∆ < 0 gives that, if −2C < B ≤ 2C , it becomes unstable for
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E > EU1 and, for B > 2C , it is unstable for EU1 < E < EU2, where
the thresholds are now given by

EU1,2 = − ∆

B ± 2C
. (51)

By the symmetry of the reduced phase space, ifY intersect C on its
upper arc for h = h, then, by decreasing h enough, it will intersect
the contour phase space atQ2 and onone further point onC−. Thus,
the fixed point Q2 turns out to be unstable exactly when also Q1
is! Indeed an easy computation shows that

EU1 = EL2, EL1 = EU2.

Moreover, by the same argument used above, we see that a tan-
gency point may occur on the upper arc of C if and only if a tan-
gency point arises between Y and C−. Hence the fixed points QU
and QL (and, as a consequence, loop and inclined orbits) bifur-
cate at the same time for E > EU1 if −2C < B ≤ 2C and for
EU1 < E < EU2 if B > 2C .

Since loop and inclined orbits bifurcate together, in the case
C < 0 the orbital structure of the system does not change, even
if P reverses its concavity.

3.5. Catastrophe map

A comprehensive way to illustrate the general results described
above is obtained by introducing a pair of combinations of the
internal and external parameters and plot the bifurcation relations
on the plane of this pair. This is referred to as the ‘catastrophe
map’ in the physical–chemical literature [13]. Recalling the four
cases generated by the signs of C and 2C − A (the reference and
the complementary cases), we can use C/(2C − A) as ‘coupling’
parameter. A parameter which usefully combines the internal
parameters E , ∆ with the remaining control parameter B is the
‘asymmetry’ parameter

ZV (E )

E
= BE + ∆

2(2C − A)E
. (52)

By using the bifurcation values (35), we get

ZV (EU1,2)

EU1,2
= ±A − 3C

2C − A
, (53)

ZV (EL1,2)

EL1,2
= ± A − C

2C − A
, (54)

whereas the line
ZV (EGB)

EGB
= 0 (55)

is associated with the global bifurcation. Plotting these lines on
the plane of the coupling and asymmetry parameters (see Fig. 1),
produces regions with no, one or two families of periodic orbits
in general position. The two triangular regions with bases on the
lower/upper sides of the plot are below/above any bifurcation line,
therefore they admit only normal modes. The central square is the
locuswith two bifurcations and therefore admits two families (one
stable, the other unstable). The two triangular regions with bases
on the lateral sides of the plot have two stable families: the hor-
izontal segments are the loci of global bifurcation. The remaining
regions have only one stable family of either type.

3.6. Physical application

A physical interpretation of the classification obtained above
concerns the relation between the phase–space structure and the
strength of the nonlinear interaction between the two degrees of
freedom.

Fig. 1. Catastrophe map: the bifurcation lines are associated with EU1, EU2
(Eq. (53), red and green lines), EL1, EL2 (Eq. (54), blue and yellow lines). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Considering the reference case and the complementary sub-
case (c), we have that, for C > 0, if C ∈ (A/3, A), both families
of periodic orbits in generic position, if they exist, are stable;
otherwise, one of the two families must be unstable. Recalling
the definitions (22) we deduce that, if the coupling ‘physical’
parameter α3 is such that
(α1 + α2)/3 < α3 < α1 + α2, α3 > 0, (56)
the system admits only stable bifurcating families.

In the complementary sub-cases (a) and (b), it is straightfor-
ward to deduce that for α3 < 0 the system admits only stable
bifurcating families if α3 stays in the complement of the interval
defined by (56). In the light of application of singularity theory [15],
the inclusion of small higher-order terms does not change these
statements.

4. An energy–momentum map for the Z2 × Z2 symmetric 1:1
resonance

The integrable dynamical system associated with the normal-
form Hamiltonian (1) gives the two-component map [16]

E M : T ∗R2 −→ R2, (57)
(p1, p2, q1, q2) �−→ (K0(p1, p2, q1, q2), K(p1, p2, q1, q2)) . (58)
The theoremof Liouville–Arnold [35] implies that, chosen a regular
valuew of E M , there is a neighborhoodW (w) such that E M

−1(W )
is isomorphic toW ×T 2. This confirms that the phase–space of our
system is a torus-bundle with (possible) singularities. By explicitly
constructing the E M map we can assess the nature of these
singularities and how they are relatedwith the critical values of the
map. At critical values the differential of the energy–momentum
map has rank less than two, therefore it is easy to guess that the
curves of critical values on the image of the map are associated
with the bifurcation lines found above and that the pre-image of
the critical values coincide with the 1-tori of the periodic orbits in
generic position [1,36].

For our purposes it is better to consider themap on the reduced
phase–space. We have

RE M : L −→ R2, (59)
(X, Y , Z) �−→ (E , H ) . (60)



16 G. Pucacco, A. Marchesiello / Physica D 271 (2014) 10–18

Fig. 2. Image of the EM map in the case 3.2, sub-case 1: A = −1/3, B = 6, C =
1/5, ∆ = −1/4.

Fig. 3. Image of the EM map in the case 3.2, sub-case 2: A = 3/10, B = 2, C =
1/5, ∆ = −1/4.

The rank of dRE M is zero at equilibrium and it is one where
the differential of the two components are linearly dependent and
not both zero. These conditions for the singular values of the map
correspond to those exploited above in the geometric analysis.
The H component assumes its extrema just on the normal modes
and therefore the curves defined by (33)–(34) give the boundary
branches of the image of the energy–momentum map up to the
first bifurcation. The values of H at the contact points between
the reduced phase–space and the second integral given by the
functions (39) and (41) provide new branches starting and/or
ending at bifurcating points. External branches are produced
by stable bifurcations, the internal ones appear when unstable
bifurcations are accompanied by the return to stability of a normal
mode. All these features are nicely displayed in the bifurcation
plots of the image of the map.

Let us consider for definiteness the reference case of Section 3.2.
In Fig. 2 we see the image plot corresponding to the first sub-case,
that with A < C: the vertical lines are given by the sequence
EU1, EL1, EL2, EU2 and the range of the map is the union of the
3 domains {0 ≤ E ≤ EU1, h2 ≤ h ≤ h1}, {EU1 ≤ E ≤
EU2,min(h2, h1) ≤ h ≤ hU } and {E ≥ EU2, h1 ≤ h ≤ h2}. The thin
blue curves correspond to the two normal modes. The red curve is
associated with the bifurcation of the stable family of the inclined
orbits whereas the green curve is associated with the bifurcation
of the unstable family of the loop orbits: the ‘chamber’ below it
is occupied by invariant-tori around NM2 (again stable after EL1)
which disappears when NM1 becomes unstable at EL2.

In Fig. 3 we see the plot corresponding to the second sub-
case, that with C < A < 2C: the bifurcation sequence now is
EU1, EL2, EGB, EL1, EU2 and the range of themap is the union of the 5

domains {0 ≤ E ≤ EU1, h2 ≤ h ≤ h1}, {EU1 ≤ E ≤ EL2, h2 ≤ h ≤
hU }, {EL2 ≤ E ≤ EL1, hL ≤ h ≤ hU }, {EL1 ≤ E ≤ EU2, h1 ≤ h ≤ hU }
and {E ≥ EU2, h1 ≤ h ≤ h2}. The red curve is again associatedwith
the bifurcation of the stable family of the inclined orbits whereas
now the green curve is associated with the bifurcation of the stable
family of the loop orbits and the chamber above it is occupied by
invariant-tori parented by them. At the value EGB corresponding to
the global bifurcation the phase–space fraction of tori around the
normal modes vanishes.

In both instances the parameters are chosen in order to have
positive values for all the thresholds: otherwise, one or more
branching points are lacking and the ensuing chambers are un-
bounded. The complementary cases of Section 3.3 can be obtained
by applying the transformation rules of Table 1.

5. Actions, periods and rotation number

According to the Liouville–Arnold theorem [35] there exists a
set of action-angle variables such that the Hamiltonian could be
written in the form

K = K (J1, J2). (61)

The ‘frequencies’ are accordingly found bymeans of the derivatives

ω� = ∂K

∂J�

. (62)

The problem of finding expressions for the actions J�, � = 1, 2, is
simplified by the fact that K0 = E is already one of them, J1

.=
E . The reduced dynamics investigated in the previous sections
suggests to look for quadratures in Z . The canonical variables
adapted to the resonance can be slightly modified with a linear
transformation such that the symplectic structure becomes dE ∧
dη+ + dZ ∧ dη−, with η± = (φ2 ± φ1)/2. The second ‘non-trivial’
action can therefore be computed by means of

J2(E , h) = − 1
2π

�
η−dZ, (63)

where the contour of integration is the cross-section of the
invariant torus fixed by E and h on the (Z, η−)-plane. By applying
the linear transformation to the expressions of the invariants
(12)–(13) and using the first of (25) we find

η− = 1
4
arccos

�
X

E 2 − Z2

�
. (64)

The reduced dynamics is embodied in the relation (31) determin-
ing the parabola X = P(Z; E , h). Henceforth, we obtain the fol-
lowing quadrature for the non-trivial action

J2(E , h) = − 1
8π

�
arccos

�
P(Z; E , h)

E 2 − Z2

�
dZ . (65)

With the approach adopted by Cushman and Bates [16] and
successfully exploited in other resonant systems [1,37,36] we can
express the ‘non-trivial’ action by the linear combination

J2 = 1
2π

T (E , h) K − W (E , h) J1. (66)

The two coefficients in the combination, depending only on the
values of the integrals of motion, are respectively the first return
time T , or ‘reduced period’ (divided by 2π ), that is the time required
to complete a cycle of the reduced Hamiltonian and the rotation
number W giving (1/2π ×) the advance of the angle conjugate to
the non-trivial action in a period T . These two statements can be
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proven by observing that, from J1 = E and J2 = J2 (E , h)
follows

∂(J1, J2)

∂ (h, E )
=




0 1

∂J2

∂h
∂J2

∂E



 . (67)

Then, in view of (62), it can be readily proven [37] that

T = 2π
ω2

= 2π
∂J2

∂h
(68)

and

W = ω1

ω2
= −∂J2

∂E
. (69)

By using (65), the reduced period (68) is given by the quadrature

T (E , h) = 1
4C

�
dZ√
Q (Z)

, (70)

where we introduce the bi-quadratic

Q (Z; E , h) = (E 2 − Z2)2 − (P(Z; E , h))2 . (71)

The rotation number is given by the partial derivative (69), being
careful to recall the dependence of the reduced energy on E :

W (E , h)

= 1
8πC

�
(E 2 − Z2) (1 + ∆ + 2(A + 2C)E + BZ) + 2CE P(Z; E , h)

(E 2 − Z2)
√
Q (Z)

× dZ . (72)

These expressions are useful to assess general questions like
monodromy, non-degeneracy conditions for the application of
KAM theory, etc. [1,36]. Here we exploit them to recover the
frequencies of the periodic orbits. The integral (70) of the reduced
period can be computed by extending to the complex plane
and choosing a suitable contour determined by the roots of
the polynomial Q (Z). On periodic orbits we have double roots
due to the tangency between the Hamiltonian and the reduced
phase–space surfaces, therefore we obtain

T (E , h) = 1
4

�

γ

dZ
(Z − ZC )

√
a(Z − Z1)(Z − Z2)

, (73)

where ZC is the contact point, Z1,2 the other two roots of Q (Z) = 0
and γ is a cycle in the complex plane around the point ZC . In the
reference case, the constant a is defined as

a = (C − A)(3C − A); (74)

in the complementary cases a different choice of the sign can be
necessary. Integrals of the form (73) can be computed with the
method of residues. On the family of inclined, the double root is
given by ZU in (38), so that

TU (E , hU(E )) = 2π i
4C

Res
�

1√
Q (ZU)

�

= π

2
√
a(ZL1 − ZU)(ZU − ZL2)

, (75)

where ZL1,2 are the two distinct solutions of (37) evaluated at the
reduced energy hU of (39). By explicitly computing the solutions
and passing to the frequency we get

ω2U(E )
.= 2π

TU
= 2

�
2C

3C − A

×
�

((2(A − 3C) − B)E − ∆) (∆ + (2(A − 3C) + B)E ). (76)

Recalling the threshold values defined in the first of (35), we
see that, in the reference case, the reduced frequency of inclined
periodic orbits is real in their existence range EU1 ≤ E ≤ EU2,
coherently with its interpretation as their normal frequency.

Proceeding in an analogousmanner, with ZL double root of (37),
we get

TL (E , hL(E )) = 2π i
4C

Res
�

1√
Q (ZL)

�

= π

2
√
a(ZU1 − ZL)(ZL − ZU2)

, (77)

where ZU1,2 are the two distinct solutions of (37) evaluated at hL of
(41). Accordingly

ω2L(E )
.= 2π

TL
= 2

�
2C

C − A

×
�

(∆ − (2(A − C) − B)E ) (∆ + (2(A − C) + B)E ). (78)
From the threshold values defined in the second of (35), we again
find that, in the reference case, we have to distinguish the two
sub-cases C > A and C < A: in the former, in the existence
range EL2 ≤ E ≤ EL1, the argument of the square root is negative
confirming the fact that the family of loops is unstable; in the latter,
their reduced (normal) frequency is real and the family is stable.

We can use the quadrature for the rotation number to compute
very easily the frequency ω1 of the periodic orbit itself. Let us
denote for brevity with A(Z) the argument of the integral in the
expression (72). On the family of inclined we obtain

WU (E , hU(E )) = i
4C

Res {A(ZU)}

= i (1 + ∆ + 2(A + 3C)E + BZU)

4C

× Res
�

1√
Q (ZU)

�
, (79)

from which, comparing with (75), we get

ω1U(E ) = 1 + ∆ + 2(A + 3C)E + B
BE + ∆

2(3C − A)
. (80)

Analogously, on the family of loops we have

WL (E , hL(E )) = i
4C

Res {A(ZL)}

= i (1 + ∆ + 2(A + C)E + BZL)
4C

× Res
�

1√
Q (ZL)

�
, (81)

from which, comparing with (77), we get

ω1L(E ) = 1 + ∆ + 2(A + C)E + B
BE + ∆

2(C − A)
. (82)

6. Conclusions

We have presented a general analysis of the bifurcation se-
quences of 1:1 resonant Hamiltonian normal forms invariant un-
der Z2 × Z2 symmetry. The family of Hamiltonians is in a standard
form of a universal deformation obtained from a singularity theory
approach. The rich structure of these systemshas been investigated
with geometric methods. The bifurcation sequences of periodic or-
bits in general position are established by first reducing the normal
form and than analyzing the relative equilibria by studying the in-
tersection of the surfaces of theHamiltonian and the twice reduced
phase space.
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A generic exploration of the space of external control param-
eters is possible by first examining a reference set and then ana-
lyzing its complement by exploiting the symmetries of the system.
An overall picture is provided by the reduced energy–momentum
map for each inequivalent cases specified by the internal parame-
ters. A global picture combining internal and external parameters
is provided by plotting the catastrophe map. Finally, quadrature
formulas for actions, periods and rotation number have been ob-
tained.
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