Our main result is an infinitesimal characterization of Hilbert module module flows, not necessarily of inner type, in terms of stochastic derivations from the initial algebra into the Itô algebra. We prove that any such derivation is the difference of a *-homomorphism and the trivial embedding.

Accardi, L., Ayed, W., Ouerdiane, H. (2007). Module white noise calculus. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 15(4), 353-386 [10.1515 / ROSE.2007.002].

Module white noise calculus

ACCARDI, LUIGI;
2007-01-01

Abstract

Our main result is an infinitesimal characterization of Hilbert module module flows, not necessarily of inner type, in terms of stochastic derivations from the initial algebra into the Itô algebra. We prove that any such derivation is the difference of a *-homomorphism and the trivial embedding.
2007
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Accardi, L., Ayed, W., Ouerdiane, H. (2007). Module white noise calculus. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 15(4), 353-386 [10.1515 / ROSE.2007.002].
Accardi, L; Ayed, W; Ouerdiane, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
AcAyOu07_Module White Noise Calculus.pdf

accesso aperto

Dimensione 253.27 kB
Formato Adobe PDF
253.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/82868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact