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Abstract. Our main result is an infinitesimal characterization of Hilbert module module flows,
not necessarily of inner type, in terms of stochastic derivations from the initial algebra into the
Itô algebra. We prove that any such derivation is the difference of a ?-homomorphism and the
trivial embedding.
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1. Introduction

Stochastic integration on Hilbert modules was first developed in particular frameworks
with the goal of solving concrete problems arising in the stochastic limit of QED
(quantum electrodynamics) (see [4], [5]). Systematic developments of this calculus
in more general frameworks were later developed by Lu [28], [29], [30], Speicher
[35], Skeide [34], Goswami and Sinha [21].

To our knowledge the first nontrivial application of this calculus to a problem not
originated from the module theory itself was the solution of the problem of explicitly
constructing unitary stochastic equations driven by the square of white noise, obtained
by Accardi and Boukas in [12]. A problem which could not be solved neither using
the 1–st order representation of the 2–d order noise, obtained in [15], nor with more
direct white noise methods [16]

A fall out of this construction was an elegant and simple (in particular coordinate
free) representation, of the Itô algebra of stochastic differentials of a vector valued
quantum noise, based on the notion of Hilbert module. This representation differs
from the one previously obtained by Belavkin [19] without using Hilbert module tech-
niques. The paper [11] however was essentially algebraic and the topological issues,
concerning the extendability of the Itô table to the completion of the trivial Hilbert
module, were left implicit.

The present paper fills this gap. Moreover it extends the Hilbert module approach
to white noise flows not necessarily of inner type. It is interesting to notice that this
extension leads to a purely algebraic notion of stochastic derivative thus clarifying the
corresponding notion, introduced in [17] for operator valued measures.

Section 2 of this paper is devoted to generalize the scalar and the vector valued
white noise in the module form beginning from the creation , annihilations and num-
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ber operator. In the third section, we give the module form of the white noise Itô table
which combines the Fock space and the initial space. Using this, in Section 4, we give
a simple proof of the unitary conditions based on this language. Section 5 is devoted to
study flow equations and we find that the Hilbert module approach to these equations
naturally leads to the notion of stochastic derivative.
In the last section, we prove that any such derivation is the difference of a ?-homomorphism
and the trivial embedding.

2. Notations

2.1. Trivial Hilbert modules

In this section we recall some notations and known results on Hilbert modules, for
all these and their proofs we refer to [33]. Let Γ be a Hilbert space and let BS be a
C∗-subalgebra of the algebra of all bounded operators on the Hilbert space HS . The
algebraic tensor product:

BS ⊗ Γ

has a natural structure of (trivial) right pre-BS-Hilbert module with inner product and
right action given respectively by:

(b⊗ ψ|b1 ⊗ φ) = b∗b1 〈ψ, φ〉 ∈ BS (2.1)

(b⊗ ψ)b1 = bb1 ⊗ ψ ∈ BS ⊗ Γ (2.2)

where b, b1 ∈ BS and ψ, φ ∈ Γ. Completing it with respect to the norm

‖x‖ =
√
‖(x|x)‖∞, ∀x ∈ BS ⊗ Γ (2.3)

where ‖.‖∞ is the C∗-norm in BS , one obtains an Hilbert module denoted H. More-
over, we will use the notation ‖x‖2 = ‖x‖2

M := (x|x) for x ∈ H. We recall from [33]
the module form of the Cauchy-Schwarz inequality:

|(y|x)|2 6 ‖(y|y)‖(x|x); x, y ∈ H

which implies
‖(y|x)‖2 6 ‖(y|y)‖ ‖(x|x)‖; x, y ∈ H (2.4)

We will also use the same symbol BS ⊗ Γ to denote the completion of the algebraic
tensor product with respect to the norm (2.3). On the trivial Hilbert module BS ⊗ Γ,
one can also define a left action of BS by the formula

b(c⊗ ψ) := bc⊗ ψ; b, c ∈ BS ; ψ ∈ Γ (2.5)
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and this action is continuous for the norm (2.3). This induces the left action of BS ⊗
B(Γ) on BS ⊗ Γ defined by:

(bS ⊗ bΓ)(cS ⊗ ψ) := bScS ⊗ bΓψ; bS , cS ∈ BS ; bΓ ∈ B(Γ); ψ ∈ Γ. (2.6)

Given any BS-Hilbert module H, to any ξ ∈ H we associate right BS-linear map
ξ∗ : H → BS defined through the identity ξ∗η := (ξ|η); ξ∗ ∈ H∗; η ∈ H. The set of
all the ξ∗ (ξ ∈ H) is denoted H∗ and is a left-BS-Hilbert module with inner product

(ξ∗|η∗)H∗ := (η|ξ)H; ξ, η ∈ H
and left action given by

bξ∗ := (ξb∗)∗; ξ ∈ H, b ∈ BS ,

H∗ is called the dual Hilbert module of H (cf. [33]). If B1 is any ∗-algebra with a left
action on H, it has a natural right action on H∗ given by:

(ξ∗T )η := ξ∗(Tη) = (ξ|Tη); ξ, η ∈ H; T ∈ B1 (2.7)

In particular, taking B1 ≡ BS with the action (2.6), we see that, if x ∈ BS and ξ ∈
BS ⊗ Γ, then the product ξ∗x is the element of (BS ⊗ Γ)∗ defined as: ξ∗x(y) =
(ξ|xy), ∀y ∈ BS ⊗ Γ. Moreover xξ∗(y) := (ξ|yx). In the case of a trivial Hilbert
module BS ⊗Γ, there is also a left action of B(Γ) on BS ⊗Γ given by linear extension
of

T (b⊗ ψ) := b⊗ Tψ; b ∈ BS , ψ ∈ Γ, T ∈ B(Γ) (2.8)

Lemma 2.1. For any T ∈ B(Γ) the operator defined by (2.8) is continuous and its
norm is 6 ‖T‖B(Γ).

Proof. Let F be a finite set and let
∑

j∈F

bj ⊗ ψj ∈ BS ⊗ Γ. Consider the identity:

‖T (
∑

j∈F

bj ⊗ ψj)‖2
M =

∑

j,k∈F

(bj ⊗ Tψj |bk ⊗ Tψk) =
∑

j,k∈F

b∗jbk〈Tψj , Tψk〉

If ϕ is any state on BS , the matrix (ϕ(b∗jbk))j,k∈F is positive definite, hence there
exists a finite set G and complex numbers λα,j , α ∈ G, j ∈ F such that ϕ(b∗jbk) =∑

α∈G
λα,jλα,k. Therefore,

ϕ(‖T (
∑

j∈F

bj ⊗ ψj)‖2
M ) =

∑

α∈G

∑

j,k∈F

λα,jλα,k〈Tψj , Tψk〉 =
∑

α∈G
‖T (

∑

j∈F

λα,jψj)‖2
Γ

6 ‖T‖2 ‖
∑

α∈G

∑

j∈F

λα,jψj‖2
Γ =‖T‖2

∑

α∈G

∑

j,k∈F

λα,jλα,k〈ψj , ψk〉

= ‖T‖2
∑

j,k∈F

ϕ(b∗jbk)〈ψj , ψk〉 = ‖T‖2ϕ(‖
∑

j∈F

bj ⊗ ψj‖2
M )
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Since ϕ is an arbitrary state on BS , this implies that:

‖T (
∑

j∈F

bj ⊗ ψj)‖2
M 6 ‖T‖B(Γ)‖ ‖

∑

j∈F

bj ⊗ ψj‖2 ‖∞

and the statement follows. 2

Remark 2.2. The module norm topology induced by the norm (2.3) is the simplest
topology on BS ⊗ Γ with the property described by the following lemma. Several
other topologies can be considered on BS but, since we will only consider equations
with bounded coefficients, we can restrict our attention to the above mentioned one.
Also, we will use the notation |x|2 = x∗x, ∀x ∈ BS . The following facts are well
known (see [33]).

Lemma 2.3. If (eα) is any orthonormal basis of Γ, then any element of the trivial
Hilbert module BS ⊗ Γ, completed with the module norm topology (2.3), can be iden-
tified to a series

∑
α bα

S ⊗ eα such that the series
∑

α |bα
S |2 converges in BS .

Remark 2.4. Any linear operator bΓ acting on Γ, will be identified to the operator
bΓ ⊗ idHS

, acting on HS ⊗ Γ ≡ Γ⊗HS . Thus: bΓ(fΓ ⊗ gS) := (bΓfΓ)⊗ gS ; fΓ ∈
Γ; gS ∈ HS .

In the following, we will consider two main cases for Γ, namely:

Γ := L2(Rd;K) , Γ := Γ(L2(Rd;K))

where K is an Hilbert space, L2(Rd;K) is the Hilbert space of K–valued functions on
Rd with the inner product

(f, g) :=
∫

Rd

〈f(s), g(s)〉Kds , ∀f, g ∈ L2(Rd;K)

and Γ(L2(Rd;K)) denotes the bosonic Fock space over L2(Rd;K):

Γ(L2(Rd;K)) = ⊕∞
n=o ⊗n

sym L2(Rd;K) = ⊕∞
n=0Fn ; F0 := C ≡ CΦ

Let Sn denote the permutation group on n symbols. For any n ∈ N and for each
π ∈ Sn, the map

(k1 ⊗ · · · ⊗ kn) := kπ1 ⊗ · · · ⊗ kπn ; k1 ⊗ · · · ⊗ kn ∈ ⊗nK

extends by linearity and continuity to a unitary operator π
(n)
K of

⊗nK into itself. If
π

(n)
L2 denotes the usual action of Sn on L(Rnd); (f(s1, · · · , sn) 7→ f(sπ1 , · · · , sπn)),

then π
(n)
L2 ⊗ π

(n)
K , defined by:

(πψ)(s1, · · · , sn) := π
(n)
K ψ(sπ1 , · · · , sπn) (2.9)

acts on (⊗nL2(Rd))⊗ (⊗nK) ≡ L2(Rnd;⊗nK).
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Definition 2.5. The subspace of L2(Rnd;⊗nK), consisting of the fixed pints of all
π ∈ Sn under the action (2.9), will be denoted L2

sym(Rnd;⊗nK)

Notice that L2
sym(Rnd;⊗nK) ⊆ L2

sym(Rnd)⊗ (⊗nK) where both spaces on the right
side are identified to subspaces of L2(Rnd;⊗nK).

Lemma 2.6. The natural embedding ⊗n(f ⊗ k) ∈ ⊗n
symL2(Rd;K) 7→ (⊗nf) ⊗

(⊗nk) ∈ L2
sym(Rnd;⊗nK) extends to a unitary isomorphism.

Proof. It is known that the elements of the form⊗n(f⊗K) are total in⊗n
symL2(Rd;K)

and clearly the range of the above defined map is contained in L2
sym(Rnd;⊗nK). Now

suppose that the vector ψ ∈ L2
sym(Rnd;⊗nK) is orthogonal to the closed linear span

of the vectors (⊗nf) ⊗ (⊗nk); (f ∈ L2(Rd), k ∈ K). Identifying ψ with a function
in its equivalence class, one then has

0 = 〈(⊗nf)⊗(⊗nk), ψ〉 =
∫

Rnd

〈(⊗nk), ψ(s1, · · · , sn)〉⊗nKf(s1) · · · f(sn)ds1 · · · dsn

Thus 〈(⊗nk), ψ(s1, · · · , sn)〉⊗nK = 0 a.e. and, since the ⊗nk are total in ⊗n
symK and

ψ(s1, · · · , sn) ∈ ⊗n
symK, we conclude that ψ(s1, · · · , sn) = 0 a.e. hence ψ = 0 in

L2. 2

Corollary 2.7. The boson Fock space Γ(L2(Rd;K)) is naturally isomorphic to⊕
n≥0 L2

sym(Rnd;⊗nK), (L(R0;⊗0K) := CΦ).

Proof. This follows immediately from Lemma 2.6.
2

Definition 2.8. If H = BS ⊗ Γ(L2(Rd;K)) and ψf ∈ Γ(L2(Rd;K)) is an exponen-
tial vector, then any linear combination of elements of the form cS ⊗ ψf ∈ BS ⊗
Γ(L2(Rd;K)) is called a module exponential vector. The set of module exponential
vectors will be denoted E .

By construction E can be identified to the set of all sums of the form
∑

α∈F

bα ⊗ ψfα

where

(i) F is a finite set.

(ii) bα ∈ BS .

(iii) (ψfα), fα ∈ L2(Rd;K) arbitrary exponential vectors.

Definition 2.9. On the set L of linear adjointable operators with domain (of them and
of their adjoint) containing E ⊆ HS ⊗ Γ one defines the seminorms

|X|ψ := ‖Xψ‖2; ψ ∈ E (2.10)
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|X|ψ,ϕ := |〈ϕ,Xψ〉|; ϕ,ψ ∈ E (2.11)

The topology induced on L by the seminorms (2.10 ) (resp (2.11)) will be called the
topology of strong (resp weak) convergence on the module exponential vectors.

Remark 2.10. L is total in BS⊗Γ(L2(Rd;K)) with respect the Hilbert module topol-
ogy.

2.2. Module creators

The main point of the following three sections is to use Lemma (2.3) to give a meaning
to expressions such as b+

t (F ) , bt(G) , b+
t bt(T ) with

F, G ∈ BS ⊗ L2(Rd;K); T ∈̂BS ⊗ B
(
L2(Rd;K)

)

To this goal we begin to define these quantities for elements in the algebraic tensor
products

F := bS⊗γ, G := cS⊗γ′ ∈ BS⊗L2(Rd;K); T := bS⊗ bΓ∈̂BS⊗B
(
L2(Rd;K)

)

and then we extend the definition by continuity with respect to the topology given in
Definition 2.9.

Let us recall our notations for the creation, annihilation and number operators on
the Fock space Γ(L2(Rd;K)) and the corresponding white noise densities.

For g ∈ L2(Rd;K), the action of b+
t (g) on Γ(L2(Rd;K)) is the operator valued

distribution defined for a. e. t ∈ Rd by:

b+
t (g)ψ = ((b+

t (g)ψ)(n)) := ((b+
t (g(t)ψ)(n))); ∀ψ ∈ Γ(L2(Rd;K))

(b+
t (g(t))ψ)(n)(s1, . . . , sn)

=
1√
n

i=n∑

i=1

δ(t− si)g(si)⊗ ψ(n−1)(s1, . . . , ŝi, . . . , sn), a.e. (2.12)

where δ(t−) is the Dirac measure. The creation and annihilation operators are defined
for any square integrable measurable function g ∈ L2(Rd;K) by:

B+
g =

∫
b+
t (g(t))dt

and satisfy the commutation relation interpreted in the weak sense on the correspond-
ing domains:

[Bf , B+
g ] = 〈f, g〉L2(Rd;K), BgΦ = 0
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Definition 2.11. For any cS ⊗ g ∈ BS ⊗ L2(Rd;K) hS ⊗ ψ ∈ E ,

b+
t (cS ⊗ g(t))(hS ⊗ ψ) = cShS ⊗ b+

t (g(t))ψ, a.e.

Definition 2.12. For any cS ⊗ f ∈ BS ⊗ L2(Rd;K), define

B+(cS ⊗ f)(hS ⊗ ψ) := (cShS)⊗ (B+(f)ψ) ∈ HS ⊗ Γ(L2(Rd;K)) (2.13)

where hS ∈ HS , ψ ∈ Dom(B+(f)) ⊆ Γ(L2(Rd;K)) and

Dom(B+(f)) := (2.14)



ψ ∈ Γ(L2(Rd;K)) :

∑

n>0

‖
n∑

i=1

f(si)⊗ ψ(n−1)(s1, . . . , ŝi, . . . , sn)‖2 < ∞




More explicitly, for each n > 1:

B+(cS ⊗ f)(hS ⊗ ψ)(n)(s1, . . . , sn)

=
1√
n

cS(hS)⊗
(

n∑

i=1

f(si)⊗ ψ(n−1)(s1, . . . , ŝi, . . . , sn)

)
, a.e. (2.15)

Remark 2.13. From Corollary 2.7, it is clear that the right hand side of (2.15) is in
BS ⊗ Γ. It follows that the domain of Dom(B+(cS ⊗ f)) contains E+(f) := E ∩
Dom(idS ⊗B+(f)) = E .
Moreover, combining the equations (2.12) and (2.15), one can write, for any element
F ∈ BS ⊗ L2(Rd;K) in the algebraic span of the vectors of the form cS ⊗ f ; cS ∈
BS , f ∈ L2(Rd;K):

B+(F ) =
∫

b+
t (Ft)dt (2.16)

Proposition 2.14. The map cS⊗f 7→ B+(cS⊗f), from the algebraic Hilbert module
BS⊗algL2(Rd;K) to the linear operators defined on the algebraic module exponential
vectors can be extended by linearity and strong continuity on the module exponential
vectors to the completion of the algebraic Hilbert module BS ⊗alg L2(Rd;K).

Proof. For any two elements β, β1 of L2(Rd;K), we use the notation |β〉〈β1| for the
operator on L2(Rd;K) defined by

|β〉〈β1|(x) = 〈β1, x〉β, ∀x ∈ L2(Rd;K) (2.17)
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For any F :=
∑

j∈J

cS,j ⊗ fj ∈ H, ψ :=
∑

α∈K

hS,α ⊗ ψgα ∈ E+(F ) =
⋂

j∈K

E+(fj) and

J, K finite sets, we have:

‖B+(F )(
∑

α∈K

hS,α ⊗ ψgα)‖2

= ‖B+(
∑

j∈J

cS,j ⊗ fj)(
∑

α∈K

hS,α ⊗ ψgα)‖2

= ‖
∑

j,α

cS,jhS,α ⊗B+(fj)ψgα‖2

=
∑

j1,α1

∑

j2,α2

〈cS,j1hS,α1 , cS,j2hS,α2〉〈B+(fj1)ψgα1
, B+(fj2)ψgα2

〉

=
∑

α1,α2∈K

〈hS,α1 ,
∑

j1,j2∈J

c∗S,j1
cS,j2hS,α2〈ψgα1

, [B(fj1), B
+(fj2)]ψgα2

〉〉

−
∑

α1,α2∈K

〈hS,α1 ,
∑

j1,j2∈J

c∗S,j1
cS,j2hS,α2〉〈B(fj1)ψgα1

, B(fj2)ψgα2
〉

= J − I 6 max{J, I}

where

I :=
∑

α1,α2∈K

〈hS,α1 ,
∑

j1,j2∈J

c∗S,j1
cS,j2hS,α2〉〈B(fj1)ψgα1

, B(fj2)ψgα2
〉

=
∑

α1,α2∈K

∑

j1,j2∈J

〈hS,α1 , c
∗
S,j1

cS,j2hS,α2〉〈gα1 , fj2〉〈fj1 , gα2〉〈ψgα1
, ψgα2

〉

=
∑

α1,α2∈K

〈ψgα1
, ψgα2

〉〈hS,α1 ,
∑

j1,j2∈J

c∗S,j1
cS,j2〈gα1 , fj2〉〈fj1 , gα2〉hS,α2〉

=
∑

α1,α2∈K

〈ψgα1
, ψgα2

〉〈hS,α1 ,


∑

j1∈J

cS,j1〈fj1 , gα2〉




∑

j2∈J

cS,j2〈gα1 , fj2〉

hS,α2〉

=
∑

α1,α2∈K

〈ψgα1
, ψgα2

〉〈hS,α1 , (F |(1⊗ |gα1〉〈gα2 |)F )hS,α2〉

From Lemma (2.1) and from the Cauchy Schwartz inequality (2.4) for the Hilbert
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modules, it follows that, denoting ‖F‖ the module norm (2.3) of F :

|I| 6
∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ ‖(F |(1⊗ |gα1〉〈gα2 |)F )‖∞

6
∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ ‖F‖
1
2 ‖(1⊗ |gα1〉〈gα2 |)F )‖ 1

2

6


 ∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ ‖ |gα1〉〈gα2 | ‖
1
2


 ‖F‖

6


 ∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ |〈gα1 , gα2〉|
1
2


 ‖F‖ (2.18)

Similarly

J :=
∑
α1,α2

〈hS,α1 ,
∑

j1,j2

c∗S,j1
cS,j2hS,α2〈ψgα1

, [B(fj1), B
+(fj2)]ψgα2

〉〉

=
∑
α1,α2

〈hS,α1 ,
∑

j1,j2

c∗S,j1
cS,j2hS,α2〈ψgα1

, 〈fj1 , fj2〉ψgα2
〉〉

=
∑
α1,α2

〈hS,α1 ⊗ ψgα1
,
∑

j1

c∗S,j1

∑

j1

cS,j2〈fj1 , fj2〉hS,α2 ⊗ ψgα2
〉

= 〈
∑
α1

hS,α1 ⊗ ψgα1
, (F |F )

∑
α2

hS,α2 ⊗ ψgα2
〉

6 ‖(F |F )‖∞‖
∑
α

hS,α ⊗ ψgα‖2

Finally we get with
cψ := max{

∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ |〈gα1 , gα2〉|
1
2 ,

∑
α

hS,α ⊗ ψgα‖2}:

‖B+(F )(ψ)‖2 6 cψ‖(F |F )‖∞ (2.19)

The linearity of the map F 7→ B+(F ) and the inequality (2.19) imply that we extend
by continuity the map F 7→ B+(F ) to the completion of the Hilbert module BS ⊗
L2(Rd;K). 2

Notation: For every cS ∈ BS and f ∈ L2(Rd;K), we define the operator valued
measure on Rd

I ⊆ Rd 7→ B+
I (cS ⊗ f) := B+(cS ⊗ χI ⊗ f)

For this measure, we will use the notation dB+
t (cS ⊗ f).
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2.3. Module annihilators

Recall that the annihilation white noise densities on the Fock space Γ(L2(Rd;K)) are
the operators defined, for any square integrable measurable function g ∈ L2(Rd;K),
by:

Bg =
∫

bt(g(t))dt (2.20)

where bt(g(t)) acts on D1 =
{
ψ ∈ Γ(L2(Rd;K));

∑
n>1 n‖ψ(n)‖2 < ∞}

by:

bt(g)ψ = ((bt(g)ψ)(n)) = ((bt(g(t))ψ)(n)), a.e.

Lemma 2.15. For every cS ∈ BS and g ∈ L2(Rd;K), the adjoint of the operator
b+
t (cS ⊗ g) (resp. B+(cS ⊗ g)) is well defined on E and is given for a. e. t ∈ Rd and

hS ⊗ ψ, h1
S ⊗ φ ∈ E ∩ HS ⊗D1 = Eby

〈
b+
t (cS ⊗ g)(hS ⊗ ψ), h1

S ⊗ φ
〉

=
〈
cS(hS)⊗ b+

t (g(t))(ψ), h1
S ⊗ φ

〉

= 〈cS(hS), h1
S〉

〈
b+
t (g(t))(ψ), φ

〉
= 〈hS , c∗S(h1

S)〉 〈ψ, bt(g(t))(φ)〉
=

〈
hS ⊗ ψ, c∗S(h1

S)⊗ bt(g(t))(φ)
〉

=
〈
hS ⊗ ψ, bt(cS ⊗ g)(h1

S ⊗ φ)
〉

Moreover, for any cS ⊗ f ∈ BS ⊗alg L2(Rd;K) and for any hS ⊗ ψ, h1
S ⊗ φ ∈ E one

has:
〈
B+(cS ⊗ f)(hS ⊗ ψ), h1

S ⊗ φ
〉

=
〈
cS(hS)⊗B+(f)(ψ), h1

S ⊗ φ
〉

= 〈cS(hS), h1
S〉

〈
B+(f)(ψ), φ

〉

= 〈hS , c∗S(h1
S)〉 〈ψ,B(f)(φ)〉

=
〈
hS ⊗ ψ, c∗S(h1

S)⊗B(f)(φ)
〉

=
〈
hS ⊗ ψ, B(cS ⊗ f)(h1

S ⊗ φ)
〉

Definition 2.16. For any cS ⊗ g ∈ BS ⊗ L2(Rd;K), the operator bt(cS ⊗ g) will be
called annihilator density and satisfies ∀hS ⊗ ψ, h1

S ⊗ φ module exponential vectors:
〈
b+
t (cS ⊗ g)(hS ⊗ ψ), h1

S ⊗ φ
〉

=
〈
hS ⊗ ψ, bt(cS ⊗ g)(h1

S ⊗ φ)
〉

One can conclude:
bt(cS ⊗ g) = c∗S ⊗ bt(g)

Remark 2.17. For any cS ⊗ g ∈ BS ⊗L2(Rd;K), hS ⊗ ψ ∈ E , we define the annihi-
lation densities bt(g(t)) by the prescription

bt(cS ⊗ g)(hS ⊗ ψ) := c∗S(hS)⊗ bt(g(t))(ψ), a.e. (2.21)

Then we extend it to the pre-Hilbert module BS ⊗alg L2(Rd;K) by linearity.
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Remark 2.18. We will use the same symbols b+
t (g), bt(g) for the creation and annihi-

lation densities acting on the Hilbert module, and on Γ(L2(Rd;K)), so one has:

bt(g) : HS ⊗ Γ(L2(Rd;K)) −→ HS ⊗ Γ(L2(Rd;K)) (2.22)

Moreover, bt(g) is well defined on E .

Definition 2.19. For any cS ⊗ f ∈ BS ⊗ L2(Rd;K), the operator B(cS ⊗ f) given in
Lemma (2.15) will be called annihilator operator. From this, we get:

B(cS ⊗ f) = c∗S ⊗B(f) (2.23)

Proposition 2.20. The map cS⊗f 7→ B(cS⊗f), from the pre–Hilbert moduleBS⊗alg

L2(Rd;K) to the linear operators defined on the module exponential vectors, can be
extended by anti-linearity and strong continuity on the module exponential vectors to
the completion of the whole Hilbert module BS ⊗ L2(Rd;K).

Proof. The anti-linearity of the map F 7→ B(F ) is clear from (2.23) and (2.20). If a
sequence (Fn) ∈ BS ⊗ L2(Rd;K) converges to 0 with respect to the Hilbert module
topology, then B(F ) converges to 0 in the strong topology on E . Moreover, for any

F =
∑

j∈I1

cS,j ⊗ fj ∈ BS ⊗ L2(Rd;K)

and
ψ =

∑

α∈I2

hS,α ⊗ ψgα ∈ E

(I1, I2 are finite sets)

‖B(F )ψ‖2 = ‖B(
∑

j

cS,j ⊗ fj)(
∑

α∈Ifinite

hS,α ⊗ ψgα)‖2

= ‖
∑

j,α

cS,jhS,α ⊗B(fj)ψgα‖2

=
∑

j1,α1

∑

j2,α2

〈cS,j1hS,α1 , cS,j2hS,α2〉〈B(fj1)ψgα1
, B(fj2)ψgα2

〉

=
∑
α1,α2

∑

j1,j2

〈hS,α1 , c
∗
S,j1

cS,j2hS,α2〉〈gα1 , fj2〉〈fj1 , gα2〉〈ψgα1
, ψgα2

〉

=
∑
α1,α2

〈ψgα1
, ψgα2

〉〈hS,α1 ,
∑

j1,j2

c∗S,j1
cS,j2〈gα1 , fj2〉〈fj1 , gα2〉hS,α2〉

=
∑
α1,α2

〈ψgα1
, ψgα2

〉〈hS,α1 , (F |(1⊗ |gα1〉〈gα2 |)F )hS,α2〉
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The thesis now follows from the inequality (2.18). The same argument as in Proposi-
tion (2.14) leads to the inequality

‖B(F )ψ‖ 6 c′ψ‖(F |F )‖ (2.24)

where c′ψ :=
∑

α1,α2∈K

|〈ψgα1
, ψgα2

〉|.‖hS,α1‖.‖hS,α2‖ |〈gα1 , gα2〉|
1
2 and from this the

required strong continuity follows. 2

Notation: For every cS ∈ BS and f ∈ L2(Rd;K), we define the operator valued
measure on Rd

I ⊆ Rd 7→ BI(cS ⊗ f) = B(cS ⊗ χI ⊗ f)

We will use the notation dBt(cS ⊗ f) for this measure.

2.4. Module number operators

Lemma 2.21. If the series

T =
∑

j

|fj〉〈gj | ∈ B(L2(Rd,K)), fj , gj ∈ L2(Rd,K) (2.25)

converge weakly in L2(Rd,K), then the series

n(t,
∑

j

|fj〉〈gj |) :=
∑

j

b+
t (fj(t))bt(gj(t)), a.e. (2.26)

weakly on the module exponential vectors.

Proof. For all T ∈ B(L2(Rd,K)) of the form (2.25) and for any pair of exponential
vectors ψα, ψβ ∈ Γ(L2(Rd,K)), α, β ∈ L2(Rd,K), one has for a. e. t ∈ Rd:

〈ψα, n(t,
∑

j

|fj〉〈gj |)ψβ〉 =
∑

j

〈ψα, b+
t (fj(t))bt(gj(t))ψβ〉

=
∑

j

〈α(t), fj(t)〉〈gj(t), β(t)〉〈ψα, ψβ〉

= 〈α(t),


∑

j

|fj(t)〉〈gj(t)|

β(t)〉〈ψα, ψβ〉

2

Notation: Denote by T the closure of the space spanned by operators of the form
(2.25) with respect the weak topology on B(L2(Rd,K)).
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Definition 2.22. For any linear operator T ∈ T

T =
∑

j

|fj〉〈gj | ∈ B(L2(Rd,K)), fj , gj ∈ L2(Rd,K)

where the series converges weakly on L2(Rd;K), the number density n(t, T ) is defined
by:

n(t,
∑

j

|fj〉〈gj |) :=
∑

j

b+
t (fj(t))bt(gj(t)), a.e.

where the series converges weakly on the module exponential vectors.

Definition 2.23. Let T =
∑

j cS,j ⊗ Tj ∈ BS ⊗alg T . The module number density
n(t, T ) is defined by:

n(t, T ) = n(t,
∑

j

cS,j ⊗ Tj) :=
∑

j

cS,j ⊗ n(t, Tj(t)).

Remark 2.24. We will use the following notations.

bε(t, A) =





b(t, A), ε = −1 ; A ∈ BS ⊗ L2(Rd,K)
b+(t, A), ε = +1 ; A ∈ BS ⊗ L2(Rd,K)
1, ε = 0 ; A ∈ BS

n(t, A), ε = 2 ; A∈̂BS ⊗ T .

(2.27)

Let T : t ∈ Rd → T ↪→ B(HS ⊗K) be a strongly measurable map.

Definition 2.25. The number operator is defined by

N(T ) =
∫

n(t, T (t))dt.

In particular:

Nt(cS ⊗ T ) := N(cS ⊗ χ[0,t] ⊗ T ) = cS ⊗Nt(χ[0,t] ⊗ T )

Let recall the following well known fact [31]:

Proposition 2.26. For any T, S ∈ BS ⊗ T , we have:

N(T )∗ = N(T ∗)

N(S)N(T ) = N(ST )

Proposition 2.27. For each t ∈ R+, the map T ∈ BS ⊗ T 7→ Nt(T ) is continuous
from the strong operator topology on B(HS⊗K) to the topology of strong convergence
on module exponential vectors whose test functions are finite step functions.
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Remark 2.28. By inspection of the proof below, it is clear that the condition that T
is bounded is not needed. In this case, some obvious domain conditions have to be
introduced.

Proof. For any module exponential vector ξ =
∑

α∈K

hS,α ⊗ ψα ∈ HS ⊗ Γ(L2(Rd,K))

with α ∈ L2(Rd,K) a step function, for T ∈ BS ⊗ T and K a finite set, we have:

‖Nt(T )ξ‖2 = ‖Nt(T )
∑
α

hS,α ⊗ ψα‖2 (2.28)

=
∑
α1,α2

〈hS,α1 , 〈ψα1 , Nt(T )∗Nt(T )ψα2〉hS,α2〉

=
∑
α1,α2

〈hS,α1 , 〈ψα1 , Nt(T ∗)Nt(T )ψα2〉hS,α2〉

=
∑
α1,α2

〈hS,α1 , 〈ψα1 , Nt(T ∗T )ψα2〉hS,α2〉

=
∑
α1,α2

〈hS,α1 , 〈ψα1 , Nt(|T |2)ψα2〉hS,α2〉

=
∫ t

0

∑
α1,α2

〈hS,α1 , 〈α1(t), |T |2α2(t)〉hS,α2〉〈ψα1 , ψα2〉dt

By assumption, any α ∈ K, has the form

α(s) =
∑

µ∈J

a(α)
µ χIµ(s)αµ

where J is a finite set, a
(α)
µ ∈ C, αµ ∈ K and Iµ ⊆ Rd is a bounded set. The sets J

and Iµ generally will depend on α but, by taking refinements and remaining the a
(α)
µ

one can assume that these sets are independents of α ∈ K. With these notations, one
has:

‖Nt(T )ξ‖2 (2.29)

=
∑

µ∈J

∑

α1,α2∈K

〈ψα1 , ψα2〉a(α1)
µ a(α2)

µ |Iµ|〈T (hS,α1 ⊗ α1,µ), T (hS,α2 ⊗ α2,µ)〉

where |Iµ| denotes the Lebesgue measure of Iµ ⊆ Rd. The (2.29) shows that, if Tn =∑
j∈In

c
(n)
S,j ⊗ T

(n)
j (t) converges to T strongly on HS ⊗ Γ(L2(Rd,K)), then Nt(Tn)

converges to (Nt(T )) strongly on E where Exp0(L2(Rd,K)) is the algebraic linear
span of the exponential vectors whose test functions are finite valued test functions. 2
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3. Module commutation relations: the basic estimate

Even in the case of a trivial Hilbert module, there is no simple closed form for the Bo-
son module commutation relations. The identity proved in Proposition (3.1) however
is sufficient to prove the module Itô table.

Proposition 3.1. For any cS ⊗ f, dS ⊗ g ∈ BS ⊗ L2(Rd;K), we have:

[B(cS ⊗ f), B+(dS ⊗ g)] = (cS ⊗ f |dS ⊗ g)⊗ 1 + [c∗S , dS ]⊗B+(g)B(f)(3.1)

Proof. Consider cS⊗f, dS⊗g ∈ BS⊗L2(Rd;K), using the fact that [B(f), B+(g)] =
〈f, g〉1Γ, we get:

[B(cS ⊗ f), B+(dS ⊗ g)]

= [c∗S ⊗B(f), dS ⊗B+(g)]

= (c∗SdS ⊗B(f)B+(g)− c∗SdS ⊗B+(g)B(f)) + (c∗SdS − dSc∗S)⊗B+(g)B(f)

= c∗SdS ⊗ 〈f, g〉1Γ + [c∗S , dS ]⊗B+(g)B(f)

= (cS ⊗ f |dS ⊗ g)⊗ 1Γ + [c∗S , dS ]⊗B+(g)B(f)

2

Proposition 3.2. For any F, G ∈ BS ⊗ L2(Rd;K), denoting

∆ := [B(F ), B+(G)]− (F |G)⊗ 1

One has, ∀h1,S ⊗ ψϕ1 , h2,S ⊗ ψϕ2 ∈ E ,

|〈h1,S ⊗ ψϕ1 , ∆h2,S ⊗ ψϕ2〉|
≤ |〈(1⊗ ϕ2|F )h1,S , (1⊗ ϕ1|G)h2,S〉〈ψϕ1 , ψϕ2〉|

+|〈(1⊗ ϕ2|F )∗h1,S , (1⊗ ϕ1|G)∗h2,S〉〈ψϕ1 , ψϕ2〉| (3.2)

Proof. Let F =
∑

i cS,i ⊗ fi, G =
∑

j dS,j ⊗ gj ∈ BS ⊗ L2(Rd;K). From Propo-
sition (3.1), one knows that

∆ := [B(F ), B+(G)]− (F |G)⊗ 1 =
∑

i

∑

j

(
[c∗S,i, dS,j ]⊗B+(gj)B(fi)

)
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Therefore:

|〈h1,S ⊗ ψϕ1 , ∆h2,S ⊗ ψϕ2〉|
= |

∑

i

∑

j

〈h1,S ⊗ ψϕ1 , [c
∗
S,i, dS,j ]h2,S ⊗B+(gj)B(fi)ψϕ2〉|

= |
∑

i

∑

j

〈h1,S , [c∗S,i, dS,j ]h2,S〉〈ψϕ1 , B
+(gj)B(fi)ψϕ2〉|

= |
∑

i

∑

j

(〈cS,ih1,S , dS,jh2,S〉 − 〈d∗S,jh1,S , c∗S,ih2,S〉
)

×〈B(gj)ψϕ1 , B(fi)ψϕ2〉|
= |

∑

i

∑

j

(〈cS,ih1,S , dS,jh2,S〉 − 〈d∗S,jh1,S , c∗S,ih2,S〉
)

×〈ϕ1, gj〉〈fi, ϕ2〉〈ψϕ1 , ψϕ2〉|
6 |

∑

i

∑

j

〈cS,ih1,S , dS,jh2,S〉〈ϕ1, gj〉〈fi, ϕ2〉〈ψϕ1 , ψϕ2〉|

+|
∑

i

∑

j

〈d∗S,jh1,S , c∗S,ih2,S〉〈ϕ1, gj〉〈fi, ϕ2〉〈ψϕ1 , ψϕ2〉|

= |〈[
∑

i

cS,i〈fi, ϕ2〉][
∑

j

dS,j〈ϕ1, gj〉]h1,S , h2,S〉〈ψϕ1 , ψϕ2〉|

+|〈[
∑

i

c∗S,i〈fi, ϕ2〉][
∑

j

d∗S,j〈ϕ1, gj〉]h1,S , h2,S〉〈ψϕ1 , ψϕ2〉|

= |〈(1⊗ ϕ2|F )h1,S , (1⊗ ϕ1|G)h2,S〉〈ψϕ1 , ψϕ2〉|
+|〈(1⊗ ϕ2|F )∗h1,S , (1⊗ ϕ1|G)∗h2,S〉〈ψϕ1 , ψϕ2〉|

2

4. Module Form of the Hudson-Parthasarathy Itô Table

Let us recall the Hudson Parthasarathy-Itô-table [31]:

Proposition 4.1. Let K be a separable Hilbert space. Then, for any f, g ∈ L2(R;K),
S, T ∈ B(L2(R;K)), one has:

dBt(g) dNt(T ) dB+
t (g)

dBt(f) 0 dBt(T ∗f) 〈f, g〉Kdt

dNt(S) 0 dNt(ST ) dB+
t (Sg)

dB+
t (f) 0 0 0
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In the following, we will use the following well known facts [32].

Lemma 4.2. Let (An)and (Bn) be two sequences in a BS-Hilbert module, which con-
verge respectively to A and B, then the sequence (An|Bn) converges to (A|B) in BS .

Lemma 4.3. Let (Tn)and (Cn) be two sequences inBS⊗B(Γ) which converge strongly
onHS⊗L2(Rd,K), respectively to T and C. Suppose that the sequence (‖Tn‖BS⊗B(Γ))
is bounded. Then N(TnCn) converges to N(TC) strongly onHS⊗Exp0(L2(Rd,K)).

Proof. The statement follows from Proposition (2.27) because under our assumptions
TnCn converges strongly to TC. 2

Lemma 4.4. Either (i) the sequence Tn ∈ B(HS ⊗ Γ) is bounded and ξn → 0 in
BS ⊗ Γ with respect the Hilbert module topology, or Tn → 0 in the ‖ · ‖∞-norm on
B(HS ⊗ Γ) and ξn ∈ BS ⊗ Γ, then ‖‖Tnξn‖2

M‖∞ → 0.

Proof. Let Tn and ξn be sequences satisfying the above hypothesis, it follows:

‖Tnξn‖2
M = (Tnξn|Tnξn) = (ξn|T ∗nTnξn)

For any hS , h′S ∈ HS

〈h′S , (ξn|T ∗nTnξn)hS〉 = 〈ξnh′S , T ∗nTn(ξnhS)〉HS⊗Γ

6 ‖Tn‖2〈ξnh′S , ξnhS〉HS⊗Γ

= ‖Tn‖2〈h′S , (ξn|ξn)hS〉

from this the statement follows. 2

Lemma 4.5. Let (Tn) be a sequence in BS ⊗ B(Γ) which converges in ‖ · ‖∞-norm
to T and (An) be a sequence in BS ⊗ Γ which converges to A with respect the Hilbert
module topology, then the sequence TnAn converges to TA with respect the Hilbert
module topology of BS ⊗ Γ.

Proof. For any ψ ∈ BS ⊗ Γ, we have

(TnAn − TA|ψ) = (TnAn − TnA|ψ) + (TnA− TA|ψ)

= (Tn(An −A)|ψ) + (TnA− TA|ψ)

Using Cauchy Schwartz inequality, this leads to

‖(TnAn − TA|ψ)‖∞ 6 ‖‖Tn(An −A)‖M‖∞‖‖ψ‖M‖∞
+‖‖TnA− TA‖M‖∞‖‖ψ‖M‖∞

which converges to 0 under the hypothesis. 2
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Proposition 4.6. Let F, G, F1, G1 be finite sets, (ei, i > 0) an orthonormal basis of
L2(Rd,K) and ei,j = |ei〉〈ej | ∈ B(L2(Rd,K)). Consider

A =
∑

i∈F

ai,0 ⊗ ei ∈ BS ⊗alg L2(Rd,K)

B =
∑

j∈G

a1,j ⊗ ej ∈ BS ⊗alg L2(Rd,K)

T =
∑

(i,j)∈F1×G1

ai,j ⊗ ei,j ∈ BS ⊗alg T

C =
∑

(i,j)∈F2×G2

a′i,j ⊗ ei,j ∈ BS ⊗alg T

Then,
dBt(A)dB+

t (B) = (A|B)dt

dBt(A)dNt(T ) = dBt(T ∗A)

dNt(T )dB+
t (B) = dB+

t (TB)

dNt(T )dNt(C) = dNt(TC)

Proof. Using the Itô table of Proposition 4.1, one finds

dBt(A)dB+
t (B) =

(∑

i∈F

a∗i,0 ⊗ dBt(ei)

)
∑

j∈G

a0,j ⊗ dB+
t (ej)




=
∑

(i,j)∈F×G

a∗i,0a0,j ⊗ dBt(ei)dB+
t (ej)

=
∑

(i,j)∈F×G

δi,ja
∗
i,0a0,j ⊗ dt

= (A|B)dt

dBt(A)dNt(T ) =

(∑

i∈F

a∗i,0 ⊗ dBt(ei)

)
 ∑

(i′,j)∈F1×G1

ai′,j ⊗ dNt(ei′,j)




=
∑

(i,i′,j)∈F×F1×G1

a∗i,0ai′,j ⊗ dBt(ei)dNt(ei′,j)

=
∑

(i,i′,j)∈F×F1×G1

δi,i′a
∗
i,0ai′,j ⊗ dBt(ej) = dBt(T ∗A)
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dNt(T )dB+
t (B) =


 ∑

(i,j′)∈F1×G1

ai,j′ ⊗ dNt(ei,j′)




(∑

i∈G

a1,j ⊗ dB+
t (ej)

)

=
∑

(i,j,j′)∈F1×G×G1

ai,j′a0,j ⊗ dNt(ei,j′)dB+
t (ej)

=
∑

(i,j,j′)∈F1×G×G1

δj,j′ai,j′a0,j ⊗ dNt(ei,j′)dB+
t (ej)

=
∑

(i,j)∈F1×G∩G1

ai,ja1,jdB+
t (ei) = dB+

t (TB)

dNt(T )dNt(C) =


 ∑

(i,j)∈F1×G1

ai,j ⊗ dNt(ei,j)





 ∑

(u,v)∈F2×G2

au,v ⊗ dNt(eu,v)




=
∑

(i,j,u,v)∈F1×G1×F2×G2

ai,j .au,vdNt(ei,j)dNt(eu,v)

=
∑

(i,j,u,v)∈F1×G1×F2×G2

ai,j .au,vdNt(|ei〉〈ej |)dNt(|eu〉〈ev|)

=
∑

(i,j,u,v)∈F1×G1×F2×G2

ai,j .au,v〈ej , eu〉dNt(|ei〉〈ev|)

=
∑

(i,j,u,v)∈F1×G1×F2×G2

ai,j .au,vδjudNt(ei,v) = dNt(TC)

Corollary 4.7. Let be given A,B be elements of the Hilbert module BS ⊗ L2(R,K)
and let T, C be bounded linear adjointable operators in BS ⊗T . Consider the follow-
ing convergent series with respect to the Hilbert module norms. Let

A =
∑

i∈N
ai,0 ⊗ ei

B =
∑

j∈N
a0,j ⊗ ej

T =
∑

i,j∈N
ai,j ⊗ ei,j

C =
∑

i,j∈N
a′i,j ⊗ ei,j

where(ei, i > 0) is an orthonormal basis of the separable Hilbert space H and ei,j =
|ei〉〈ej | . Let moreover T and C be of the form where the series converge strongly on
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La(BS ⊗ L2(R,K)), then,

dBt(A)dB+
t (B) = (A|B)dt

dBt(A)dNt(T ) = dBt(T ∗A)

dNt(T )dB+
t (B) = dB+

t (TB)

dNt(T )dNt(C) = dNt(TC)

Proof. First, we apply Proposition (4.6), for the finite sums. Then, by using Lemma
(4.2), (4.3) and (4.5), we pass to the limit using continuity and we get the result. 2

Definition 4.8. Let B1 = BS ⊗ B(K), BS be C∗-algebras and let H be a BS-Hilbert
module with a left action of B1 on H (i.e. a ∗-representation of B1 into the linear
operators on H) denoted T : ξ ∈ H → Tξ ∈ H; T ∈ B1. The right action of B1 on
H∗, the dual of H: The Itô algebra I(B1,H,BS), associated to the triple (B1,H,BS)
is the ∗-algebra of 2× 2 matrices

(
T ξ

η∗ b

)
; T ∈ B1, ξ ∈ H, η∗ ∈ H∗, b ∈ BS

with the multiplication
(

T1 ξ1

η∗1 b1

)(
T2 ξ2

η∗2 b2

)
:=

(
T1T2 T1ξ2

η∗1T2 η∗1ξ2

)
(4.1)

and with involution
(

T ξ

η∗ b

)∗
=

(
T ∗ η

ξ∗ b∗

)
(4.2)

Remark 4.9. The associativity of the multiplication (4.1) can be easily checked.

One of the advantage of the Hilbert module representation, is the following isomor-
phism which will be used frequently to get the results in the sequel.

Proposition 4.10. The map

dMt :

(
T ξ

η∗ b

)
→ dMt

(
T ξ

η∗ b

)
:= dNt(T ) + dB+

t (ξ) + dBt(η) + dt(b) (4.3)

is a ∗-isomorphism from the Itô algebra I(B1,H,BS) into the algebra of stochastic
differentials with mutual quadratic variation as multiplication.
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Proof. Clearly, the map dMt is linear. The independence of the differentials ([12])
leads to the injectivity of this map. Using the module Itô table given in Corollary
(4.7), we get that

dMt

(
T1 ξ1

η∗1 b1

)
dMt

(
T2 ξ2

η∗2 b2

)
= dMt

(
T1T2 T1ξ2

η∗1T2 η∗1ξ2

)

and (
T ξ

η∗ b

)∗
=

(
T ∗ η

ξ∗ b∗

)

which implies that ∗ is a ∗-homomorphism. In fact, a ∗-isomorphism into its range. 2

5. Module form of the White noise Unitarity

From now on, we will fix the dimension d to be 1. To study the module form of the
white noise unitary condition and the white noise flows, it is convenient to identify any
element of the trivial Hilbert module BS ⊗ L2(R,K) with the 1-particle sub-module
of the trivial Hilbert module BS ⊗ Γ(L2(R,K)). This is done by associating, to any
ξ ∈ L2(R,K) the element ξ̆ ∈ Γ(L2(R,K)) defined by ξ̆ := (0, ξ, 0, · · · ) and to any
A =

∑
i ai ⊗ ξi ∈ BS ⊗L2(R,K) the element Ǎ =

∑
i ai ⊗ ξ̌i ∈ BS ⊗ Γ(L2(R,K)).

2

In the following, we will use the same notation for A and Ǎ. Consider the following
module white noise differential equation:

dUt =
(
bdt + dBt(η) + dB+

t (ξ) + dNt(T )
)
Ut; U0 = 1 (5.1)

with adjoint

dU∗
t = U∗

t

(
b∗dt + dB+

t (η) + dBt(ξ) + dNt(T ∗)
)

; U∗
0 = 1 (5.2)

where η, ξ, T, b are as in Proposition (4.10). Using the notation (4.3), (5.1) can be
written as:

dUt = dMt

(
T ξ

η∗ b

)
Ut (5.3)

with adjoint given by:

dU∗
t = U∗

t dMt

(
T ∗ η

ξ∗ b∗

)
(5.4)

In the following we will use the well known independence of the stochastic differential
over the past filtration (see [31]).
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Theorem 5.1. The solution of the module quantum stochastic differential equation
(5.1) is unitary if and only if





T ∗ + T + TT ∗ = 0
ξ + η + Tη = 0
η∗ + ξ∗ + η∗T ∗ = 0
b + b∗ + η∗η = 0

(5.5)

and 



T ∗ + T + T ∗T = 0
ξ∗ + η∗ + ξ∗T = 0
η + ξ + T ∗ξ = 0
b + b∗ + ξ∗ξ = 0

(5.6)

Proof. The co-isometry condition U∗
t Ut = 1 is equivalent to:

d(UtU
∗
t ) = d(Ut)U∗

t + Utd(U∗
t ) + d(Ut)d(U∗

t ) = 0 (5.7)

and the isometry condition to:

d(U∗
t Ut) = d(U∗

t )Ut + U∗
t d(Ut) + d(U∗

t )d(Ut) = 0 (5.8)

Condition (5.7) is equivalent to:

0 =

(
dMt

(
T ξ

η∗ b

)
+ dMt

(
T ∗ η

ξ∗ b∗

)
+ dMt

(
T ξ

η∗ b

)(
T ∗ η

ξ∗ b∗

))
UtU

∗
t

=

(
dMt

(
T ξ

η∗ b

)
+ dMt

(
T ∗ η

ξ∗ b∗

)
+ dMt

(
TT ∗ Tη

η∗T ∗ η∗η

))
UtU

∗
t

Then, we get, using the independence of the basic integrator over the past;
(

T + T ∗ + TT ∗ B + A + TA

η∗ + ξ∗ + η∗T ∗ b + b∗ + η∗η

)
= 0

which is equivalent to (5.5). Similarly (5.8) leads to
(

T ∗ η

ξ∗ b∗

)
+

(
T ξ

η∗ b

)
+

(
T ∗ η

ξ∗ b∗

) (
T ξ

η∗ b

)

=

(
T ∗ η

ξ∗ b∗

)
+

(
T ξ

η∗ b

)
+

(
T ∗T T ∗ξ
ξ∗T ξ∗ξ

)
= 0

which is equivalent to (5.6).
2
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Corollary 5.2. The stochastic equation (5.1) with bounded module coefficients has a
unitary solution if and only if its coefficient matrix has the form:

(
T ξ

η∗ b

)
=

(
W − 1 −Wη

η∗ −1
2η∗η + iH

)
(5.9)

where W is an unitary operator in B1 = BS ⊗ B(K) and H is a self adjoint operator
in BS .

Proof. The conditions
T ∗ + T + T ∗T = 0

T ∗ + T + TT ∗ = 0

imply that T is a differential unitary in the sense of ([11]), so T = W − 1 where W is
unitary in B1. Moreover, the equation η∗ + ξ∗ + η∗T ∗ = 0 leads to ξ = −Wη. 2

6. Module form of the flow equation

6.1. Stochastic derivations

In the notations of Definition (4.8), we choose H to be the trivial BS-Hilbert module:
H := (BS ⊗ K) and B1 := BS ⊗ B(K) with its action on H given by (2.6). Thus,
we identify BS to a ∗-sub-algebra of the ∗-algebra of linear adjointable operators on
H. The right action of B1 on the dual module (BS ⊗ K)∗ is defined by (2.7). The Itô
algebra I(B1,H,BS), is defined by Definition (4.8).

Definition 6.1. In these notations, the right action of BS on H and on H∗ and the
natural right actions of BS on itself and on B1 = BS ⊗ B(K) induces the right action
r(.) on the Itô- algebra I(B1,H,BS) defined by

(
T ξ

η∗ b

)
r(x) :=

(
Tx ξx

η∗x bx

)

Similarly the corresponding left actions of BS induce the left action l(.) of BS on
I(B1,H,BS), defined by:

l(x)

(
T ξ

η∗ b

)
:=

(
xT xξ

xη∗ xb

)

where T ∈ BS ⊗BK, ξ ∈ BS ⊗K, η∗ ∈ (BS ⊗K)∗ and x ∈ BS .

Definition 6.2. Let I be an algebra not necessarily with identity and let l and r be a
left and a right action of BS on I related by the identity

(l(b)x)∗ = x∗r(b∗); ∀b ∈ BS , x ∈ I
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A stochastic derivation on I is a linear map δ : BS → I satisfying

δ(xy) = δ(x)l(y) + r(x)δ(y) + δ(x)δ(y); ∀x, y ∈ BS

If δ satisfies δ(x∗) = δ(x)∗ ∀x ∈ BS , then it is called a stochastic ∗-derivation.

In the following, we will use the notation δ(x)l(y) = δ(x)y and r(x)δ(y) = xδ(y).

Proposition 6.3. Let be given the linear maps:

δ2 : BS −→ (BS ⊗ B(K))

δ1 : BS −→ BS ⊗K
δ−1 : BS −→ (BS ⊗K)∗

δ0 : BS −→ BS

and define the linear map:

δ : x ∈ BS −→
(

δ2(x) δ1(x)
δ−1(x)∗ δ0(x)

)
∈ I

The map δ is a stochastic ∗-derivation if and only if for any x, y ∈ B, we have :

δ2(x∗) = δ2(x)∗ (6.1)

δ−1(x∗)∗ = δ1(x)∗ (6.2)

δ−1(x) = δ1(x∗) (6.3)

δ0(x∗) = δ0(x)∗ (6.4)

δ2(xy) = δ2(x)y + xδ2(y) + δ2(x)δ2(y) (6.5)

δ1(xy) = δ1(x)y + xδ1(y) + δ2(x)δ1(y) (6.6)

δ∗−1(xy) = δ−1(x)∗y + xδ−1(y)∗ + δ−1(x)∗δ2(y) (6.7)

δ0(xy) = δ0(x)y + xδ0(y) + (δ−1(x)∗|δ1(y)) (6.8)

Proof. δ is a stochastic ∗-derivation if and only if for any x, y ∈ BS , we have :

δ(xy) = δ(x)l(y) + r(x)δ(y) + δ(x)δ(y) (6.9)

where l and r are the left and right action given in the Definition (6.1), and

δ(x∗) = δ(x)∗ (6.10)
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(6.9) is equivalent to

(
δ2(xy) δ1(xy)

δ−1(xy)∗ δ0(xy)

)
=

(
δ2(x) δ1(x)

δ−1(x)∗ δ0(x)

)
y + x

(
δ2(y) δ1(y)

δ−1(y)∗ δ0(y)

)

+

(
δ2(x) δ1(x)

δ−1(x)∗ δ0(x)

)(
δ2(y) δ1(y)

δ−1(y)∗ δ0(y)

)

=

(
δ2(x)y δ1(x)y

δ−1(x)∗y δ0(x)y

)
+

(
xδ2(y) xδ1(y)

xδ−1(y)∗ xδ0(y)

)

+

(
δ2(x)δ2(y) δ2(x)δ1(y)

δ−1(x)∗δ2(y) (δ−1(x)∗|δ1(y))

)

From this, writing (6.10) in matrix form the statement follows. 2

6.2. Module form of the forward inner flow equation

Consider the following forward flow equation

djt(x) = d(U∗
t xUt) = (dU∗

t )xUt + U∗
t x(dUt) + (dU∗

t )x(dUt) (6.11)

where Ut satisfies the following stochastic equation in the notations (2.27):

dUt = DεdBε
t Ut (6.12)

where

Dε =





η, ε = −1
ξ, ε = +1
b, ε = 0
T, ε = 2

. (6.13)

The following proposition gives an example of (inner) stochastic derivation on the Itô
algebra I(B1,H,BS).

Proposition 6.4. Under the unitary conditions (5.9), equation (6.11) can be written in
the form:

djt(x)=U∗
t dMt

(
[W ∗, x]W W ∗[x,Wη]

[η∗W ∗, x]W −1
2 {(η|η), x}+i[H,x]+(Wη|xWη)

)
Ut (6.14)
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Proof. Equation (5.9) is equivalent to:

djt(x) = U∗
t dMt

(
T ∗ η

ξ∗ b∗

)
xUt + U∗

t xdMt

(
T ξ

η∗ b

)
Ut

+U∗
t dMt

(
T ∗ η

ξ∗ b∗

)
xdMt

(
T ξ

η∗ b

)
Ut

= U∗
t dMt

(
T ∗x ηx

ξ∗x b∗x

)
Ut + U∗

t dMt

(
xT xξ

xη∗ xb

)
Ut

+U∗
t dMt

(
T ∗x ηx

ξ∗x b∗x

)
dMt

(
T ξ

η∗ b

)
Ut

= U∗
t dMt

(
T ∗x ηx

ξ∗x b∗x

)
Ut + U∗

t dMt

(
xT xξ

xη∗ xb

)
Ut

+U∗
t dMt

(
T ∗xT T ∗xξ

ξ∗xT ξ∗xξ

)
Ut

= U∗
t dMt

(
T ∗x + xT + T ∗xT ηx + xξ + T ∗xξ

ξ∗x + xη∗ + ξ∗xT b∗x + xb + ξ∗xξ

)
Ut

Then, using the unitary conditions (5.9) one finds (6.14). 2

6.3. Module form of the backward inner flow equations

Consider the backward inner flow equation

djt(x) = d(UtxU∗
t ) = d(Ut)xU∗

t + Utxd(U∗
t ) + d(Ut)xd(U∗

t ) (6.15)

where Ut satisfy the equations (6.12), (6.13).

Remark 6.5. From the proof of Proposition (6.6) below it will be clear that the main
difference between the forward and the backward flow equations is that, in the latter
case one has to extend the domain of definition of the basic integrators so to give a
meaning to expressions such as (for example) dBt(η∗jt(x)). This can easily be done
using the factorability of the Fock representation.

Proposition 6.6. Under the unitary conditions (5.9), equation (6.15) can be written in
the form:

djt(x) = dMt

(
Wjt(x)W ∗ − jt(x) W [jt(x), η]

[η∗, jt(x)]W ∗ −1
2 {(η|η), jt(x)}+ i[H, jt(x)] + (η|jt(x)η)

)

(6.16)
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Proof. equation (6.15) is equivalent to:

djt(x) = DεdBε
t UtxU∗

t + UtxU∗
t D∗

εdBε
t
+ + DεdBε

t UtxU∗
t D∗

εdBε
t
+ (6.17)

where jt(x) = UtxU∗
t ∈ BS ⊗ BΓ[0,t] ( where Γ[0,t] = Γ(L2([0, t],K)), see [31] for

more detail), satisfies

jt(x) =
∑
α

bS,α ⊗ v t],α

where bS,α ∈ BS and v t],α ∈ BΓ[0,t] . Then, using the adaptness property ([2]), it
follows that for any ξ = bS ⊗ ψK

dBt(ξ)jt(x) = bS ⊗B+(χ[t,t+dt] ⊗ ψK)(
∑
α

bS,α ⊗ v t],α)

=
∑
α

bSbS,α ⊗B+(χ[t,t+dt] ⊗ ψK)⊗ v t],α

=
∑
α

B+(bSbS,α ⊗ ψK ⊗ χ[t,t+dt])⊗ v t],α

Using similar technique for the case dB+
t and dNt, it follows that:

djt(x) = dMt

(
T ξ

η∗ b

)
jt(x) + jt(x)dMt

(
T ∗ η

ξ∗ b∗

)

+dMt

(
T ξ

η∗ b

)
jt(x)dMt

(
T ∗ η

ξ∗ b∗

)

= dMt

(
Tjt(x) ξjt(x)
η∗jt(x) bjt(x)

)
+ dMt

(
jt(x)T ∗ jt(x)η
jt(x)ξ∗ jt(x)b∗

)

+dMt

(
T ξ

η∗ b

)
dMt

(
jt(x)T ∗ jt(x)η
jt(x)ξ∗ jt(x)b∗

)

= dMt

(
Tjt(x) ξjt(x)
η∗jt(x) bjt(x)

)
+ dMt

(
jt(x)T ∗ jt(x)η
jt(x)ξ∗ jt(x)b∗

)

+dMt

(
Tjt(x)T ∗ Tjt(x)η
η∗jt(x)T ∗ η∗jt(x)η

)

= dMt

(
Tjt(x) + jt(x)T ∗ + Tjt(x)T ∗ ξjt(x) + jt(x)η + Tjt(x)η
η∗jt(x) + jt(x)ξ∗ + η∗jt(x)T ∗ bjt(x) + jt(x)b∗ + η∗jt(x)η

)

Then, using the unitary conditions (5.9), we find (6.16).
2
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6.4. Backward module flows

In this section we consider the following backward equation:

djt(x) = dMt

(
δ2(jt(x)) δ1(jt(x))

δ−1(jt(x))∗ δ0(jt(x))

)
=: dMt(δ(jt(x))) (6.18)

j0(x) = x ∀x ∈ B(HS)

where the maps δε are as in Proposition (6.3) (in particular they are bounded) and
where the meaning of the right hand side of (6.18) has been explained in the proof of
Proposition (6.6).

Theorem 6.7. The unique solution of the backward flow equation (6.18) is an identity
preserving ∗–homomorphism if and only if the map

δ :=

(
δ2 δ1

δ1 δ0

)
(6.19)

is a stochastic derivation.

Proof. The condition jt(1) = 1 is equivalent to djt(1) = 0. The independence of the
basic stochastic differentials shows that this is equivalent to:

δ2(1) = δ1(1) = δ0(1) = δ−1(1) = 0

The condition: jt(x)∗ = jt(x∗) that the left hand of the two equations:

djt(x)∗ = dMt

(
δ2(jt(x))∗ δ−1(jt(x))
δ1(jt(x))∗ δ0(jt(x))∗

)

djt(x∗) = dMt

(
δ2(jt(x∗)) δ1(jt(x∗))

δ−1(jt(x∗))∗ δ0(jt(x∗))

)

are equal. By the independence of the basic integrators, this is equivalent to the four
conditions (6.1), (6.2), (6.3), (6.4). Finally, equation (6.18) applied to xy gives:

djt(xy) = dMt

(
δ2(jt(xy)) δ1(jt(xy))

δ−1(jt(xy))∗ δ0(jt(xy))

)
(6.20)
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The identity jt(xy) = jt(x)jt(y) is equivalent to the statement that the right hand side
of equation (6.20) is equal to the right hand side of the following equation.

djt(xy) = djt(x)jt(y) + jt(x)djt(y) + djt(x)djt(y)

= dMt

(
δ2(jt(x)) δ1(jt(x))

δ−1(jt(x))∗ δ0(jt(x))

)
jt(y)

+jt(x)dMt

(
δ2(jt(y)) δ1(jt(y))

δ−1(jt(y))∗ δ0(jt(y))

)

+dMt

(
δ2(jt(x)) δ1(jt(x))

δ−1(jt(x))∗ δ0(jt(x))

)
dMt

(
δ2(jt(y)) δ1(jt(y))

δ−1(jt(y))∗ δ0(jt(y))

)

= dMt

(
δ2(jt(x)) δ1(jt(x))

δ−1(jt(x))∗ δ0(jt(x))

)
jt(y)

+jt(x)dMt

(
δ2(jt(y)) δ1(jt(y))

δ−1(jt(y))∗ δ0(jt(y))

)

+dMt

(
δ2(jt(x))δ2(jt(y)) δ2(jt(x))δ1(jt(y))

δ−1(jt(x))∗δ2(jt(y)) (δ−1(jt(x))∗|δ1(jt(y)))

)

= dMt

(
δ2(jt(xy)) δ1(jt(xy))

δ−1(jt(xy))∗ δ0(jt(xy))

)

The independence of the basic integrators implies that this is equivalent to the identities
(6.5), (6.6), (6.7), (6.8). 2

6.5. Forward flow equation

Theorem 6.8. Let δ2, δ−1(.)∗, δ1, δ0 be as in Theorem (6.7). The unique solution of
the forward flow equation

djt(x) = jt

(
dMt

(
δ2(x) δ1(x)

δ−1(x)∗ δ0(x)

))
(6.21)

j0(x) = x; ∀x ∈ B(HS)

is an identity preserving ∗–homomorphism if and only if the map (6.19) is a stochastic
derivation.

Proof. The proof is based on the same idea as Theorem (6.7) and will be omitted. 2
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7. Structure of stochastic derivation

Theorem 7.1. Let BS and Î be ∗-algebras and let δ be a linear map of BS into Î.
Suppose that there exists a ∗-homomorphism ı : BS −→ Î, a right and left action

r̂ : BS −→ L(Î), l̂ : BS −→ L(Î)

satisfying the conditions

ı(b)x = l̂(b)x, xr̂(b) = xı(b); ∀b ∈ BS ; ∀x ∈ Î

Then the map
α := ı + δ : BS −→ L(Î) (7.1)

is a ∗-homomorphism if and only if δ satisfies the conditions:

δ is linear (7.2)

δ(1) = 0 (7.3)

δ(a∗) = δ(a)∗ (7.4)

δ(ab) = δ(a)r̂(b) + l̂(a)δ(b) + δ(a)δ(b) (7.5)

Proof. Notice that, if α and δ are related by (7.1), then

α(a)α(b) = (ı(a) + δ(a))(ı(b) + δ(b)) = ı(ab) + l̂(a)δ(b) + δ(a)r̂(b) + δ(a)δ(b)

α(ab) = ı(ab) + δ(ab)

So α is multiplicative if and only if δ satisfies (7.5). The remaining conditions are
easily verified. 2

Corollary 7.2. In the notations of Theorem (6.7), the map δ2 has the form

δ(a) = α(a)− ı(a)

where ı is the natural imbedding of BS into BS ⊗ BK:

ı : b ∈ BS −→ b⊗ 1K ∈ BS ⊗ BK (7.6)

and α is a ∗-endomorphism of BS ⊗ BK .

Proof. This follows from Theorem (7.1) with ı given by (7.6) and for any b, bS ∈ BS ,
and bK ∈ BK :

Î = BS ⊗ BK ; l̂(b)(bS ⊗ bK) = (bbS)⊗ bK ; (bS ⊗ bK)r̂(b) = (bSb⊗ bK)

2
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Remark 7.3. From the above results we define the following new form of the homo-
morphic flow equation.

Definition 7.4. In the notations of Definition (6.2), we denote BS ⊕ I the ∗-algebra
with product and involution given respectively by:

(b + a0)(b′ + a′0) := bb′ + l(b)a′0 + a0r(b) + a0a
′
0 ∈ BS ⊕ I

(b + a0)∗ = b∗ + a∗0
where b, b′ ∈ BS , a0, a

′
0 ∈ I.

Remark 7.5. This algebra has no identity but the projection 1BS
+0 acts as the identity

on BS ≡ BS ⊕ 0.

Corollary 7.6. In the notations of Definitions (6.2) and (7.4), any stochastic deriva-
tion δ in the sense of Definitions (6.2) has the form

δ(b) = α(b)− b; b ∈ BS (7.7)

where α is a ∗-homomorphism from BS into BS ⊕ I satisfying the condition

α(b)− b ∈ I, ∀b ∈ BS (7.8)

Conversely, if α is a ∗-homomorphism from BS into BS⊕I satisfying conditions (7.8),
then δ, defined by (7.7) is a stochastic derivation.

Proof. Let Î := BS ⊕ I and denote ı : b ∈ BS −→ ı(b) := b + 0I the natural
embedding and define ∀b, bS ∈ BS , a0 ∈ I:

l̂(b)(bS + a0) := bbS + l(b)a0

(bS + a0)r̂(b) := bSb + a0r(b)

Then ∀b, bS ∈ BS , a0 ∈ I
ı(b)(bS + a0) = bbS + l(b)a0 = l̂(b)(bS + a0) (7.9)

(bS + a0)ı(b) = bSb + a0r(b) = (bS + a0)r̂(b) (7.10)

Then, given δ, the map α defined by (7.7) is a ∗-homomorphism from BS into BS ⊕
I by Theorem (7.1) and satisfies (7.8) by construction. Conversely, if α is a ∗-
homomorphism from BS into BS ⊕ I satisfying (7.8), then from Theorem (7.1) we
know that the map

δ := α− ı : BS −→ I
satisfies with l̂ and r̂ given by (7.9) and (7.10) respectively. From this it is easy to show
that δ is a stochastic derivation in the sense of Definition (6.2). 2
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