The notion of mutual quadratic variation (square bracket) is extended to a quantum probabilistic framework. The mutual quadratic variations of the annihilation, creation, and number fields in a Gaussian representation are calculated, in both the Boson and the Fermion case, in the strong apology on a common invariant domain. It is proved that the corresponding Ito table closes at the second order. The Fock representation is characterized, among the Gaussian ones, by the property that its Ito table closes at the first order.

Accardi, L., Quaegebeur, J. (1989). The Ito algebra of quantum Gaussian fields. JOURNAL OF FUNCTIONAL ANALYSIS, 85(2), 213-263.

The Ito algebra of quantum Gaussian fields

ACCARDI, LUIGI;
1989-01-01

Abstract

The notion of mutual quadratic variation (square bracket) is extended to a quantum probabilistic framework. The mutual quadratic variations of the annihilation, creation, and number fields in a Gaussian representation are calculated, in both the Boson and the Fermion case, in the strong apology on a common invariant domain. It is proved that the corresponding Ito table closes at the second order. The Fock representation is characterized, among the Gaussian ones, by the property that its Ito table closes at the first order.
1989
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Accardi, L., Quaegebeur, J. (1989). The Ito algebra of quantum Gaussian fields. JOURNAL OF FUNCTIONAL ANALYSIS, 85(2), 213-263.
Accardi, L; Quaegebeur, J
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
AcQu88_Ito algebra of QGF.pdf

accesso aperto

Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/82408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact