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The notion of mutual quadratic variation (square bracket) is extended to a quan- 
tum probabilistic framework. The mutual quadratic variations of the annihilation, 
creation, and number fields in a Gaussian representation are calculated, in both the 
Boson and the Fermion case, in the strong topology on a common invariant 
domain. It is proved that the corresponding Ito table closes at the second order. 
The Fock representation is characterized, among the Gaussian ones, by the 
property that its Ito table closes at the first order. 0 1989 Academic press, IX. 

1. ITO ALGEBRAS 

A classical complex valued stochastic process on a probability space 
(Sz, 9, P) indexed by an interval Ts R can be looked at as a map X from 
T with values in the measurable functions on (Sz, 8, P). The set &’ of these 
functions is a *-algebra for the pointwise operations and for the involution 
given by 

f*(o) =&f(o); COEQ. 

To every process X as above we can associate an d-valued finitely additive 
measure on the sub-intervals Z= (a, b] of T defined by 

X(Z) = x, - x, 

called the increment of X. Conversely, if ZG Tw X(Z) E d is such a 
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measure then to every random variable X,, we can associate the stochastic 
process 

-K=Jf,+w,, 1) if t, < t 

J-t = x, -NC to) if to> t 

with the property that the increment measure of the process is the initial 
one. Thus, up to an “initial value” X,, there is a one-to-one correspondence 
between complex valued processes on (L&F-, P) indexed by T and 
d-valued measures on T. 

The mutual quadratic variation [6, 71, also called the brackets, of two 
classical stochastic processes X, Y is defined in terms of the associated 
measures (still denoted X, Y) by 

ITX YII (1) = lim 1 XV,) . Y(Zk), 
k 

where the limit is taken over some net (Zk) of partitions of Z and is meant 
for some topology on d (a.e. convergence, convergence in probability, 
convergence in Lp, . ..). S ince the notion of mutual quadratic variation is 
one of the basic tools in classical stochastic calculus it is natural to try and 
generalize this notion in two main directions: 

(i) The index set T is multidimensional (or even a general 
measurable space). 

(ii) The processes (hence the corresponding measures) take value in 
a noncommutative *-algebra d. 

Quantum fields provide examples of both situations and since all the 
known examples of quantum fields are built as perturbations of free 
(Gaussian) fields the first step of our program will be the evaluation of the 
mutual quadratic variations of quantum Gaussian fields. 

In order to have a unified treatment of the classical and the quantum 
cases, we are led to consider a general set T (called the index set), a family 
$3 of parts of T closed under finite unions, finite intersections, and relative 
complements and a topological *-algebra with identity d whose topology 
is given by a family of seminorms { v,.~: f, g E D} (D-a set). The typical 
case, corresponding to the classical and quantum processes, will be: T= R 
(or a sub-interval thereof); 93 the Boolean algebra generated by the inter- 
vals; d = S?(K) for some Hilbert space K, or d a *-algebra of unbounded 
operators defined on a common invariant dense domain D EK, and the 
seminorms {v,-,,} given by 

vf&,(a)= I(.Lag)l; aEd; f,geD. (1.1) 
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Another class of seminorms interesting for the stochastic calculus is 
(cf. ElII 

V/(4 = Ml; aE.d;fED. (1.2) 

In the following for simplicity we write ZC T for ZE 93 and, for such an 
Z, we denote 9(Z) the set of all finite partitions (Zk), k= 1, . . . . n, of Z with 
elements of W. Clearly P(Z) is a directed set for the order relation “is a liner 
partition than” and therefore it can be used to index nets. If (x,),,~(~) is 
a family of elements of a topological space, indexed by 9(Z), the expression 

lim x, 
7cEsqI) 

will denote the limit of x, with respect to the net P(Z). 
A finitely additive d-valued measure on $3 is a map X: 93 -+ d such that 

qzu J) = X(Z) + X(J) (1.3) 

for any pair of disjoint elements Z, JE g. Unless stated otherwise by an 
operator valued measure we shall mean a finitely additive measure. The 
vector space of d-valued measures on (T, 39) will be denoted A( T, 9l’; d) 
or simply A( r; &) 

DEFINITION (1.1). Let X, Y: 93 + & be finitely additive measures. The 
mutual quadratic variation [X, yll of X and Y is the measure defined by 

IIX rn (0 = (,$?(,) 1 Wk) Wk) 
k 

is the limit on the right-hand side exists in d for all ZE a’. Otherwise it is 
not defined. 

Remark (1). In classical probability the mutual quadratic variation 
between X and Y is usually denoted [X, Y]. We introduced the double 
bracket notation to prevent confusion with the commutator. 

Remark (2). Instead of “mutual quadratic variation of X and Y” we 
will also use the shorter expression “brackets of X and Y.” 

Remark (3). The notion of brackets depends not only on the topology 
on d, but also on the precise meaning of limit in the expressions like (1.4). 
We have adopted here the meaning described since it has the nice property 
that the bracket of two finitely additive measures, if it exists, is again a 
finitely additive measure. Clearly several other notions of limit in (1.4) 
could be considered. For example, if T is a bounded interval of R and 39 
is the class of finite unions of sub-intervals of T of the form (s, t], then the 
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limit (1.4) could be defined by choosing the limit over the sequence of 
dyadic partitions of T. All the results from Section 3 will not depend on the 
choice of the notion of limit in (1.4). 

The following examples of brackets are not of the usual semi-martingale 
type. In the language to be adopted from Section 3 on, one might say that 
these examples concern the “one particle level” and our goal will consist in 
the computation of the brackets of different types of “second quantized 
versions” of these measures. 

EXAMPLE (1). Let X: 99 + d be a projection valued measure, then for 
any ZE T and for any family of seminorms 

IX al (4 = m, 

EXAMPLE (2). Let T= R; g-the Bore1 a-algebra on R; d = a(L*(R)); 
and let eP, e, be the projection valued measures of the position 
((QZ)(x) = xf(x)) and momentum ((P’)(x) = (l/i)(a/ax) f(x)) operators, 
respectively. Then for any ZE T 

Eepy eQll(4 = CeQ, epDW = 0 

for the topology induced on a(H) by the seminorms ~,-~(a) = 
(f af); a~99(L*(R)) with f in the Schwartz space Y(R) of rapidly 
decreasing functions. This follows from the estimate 

IleQU) eptOfl12 < llfll 1 V13, 

where /I( is the Lebesgue measure of I. 

EXAMPLE (3). The following is an example of a measure m on R with 
values in the bounded operators on L*(R) which satisfies 

Im, ml (1) = m(Z) (1.5) 

in the same topology of Example (2) even if m is not projection valued. In 
the notations of Example (1 ), let .Z be a fixed bounded interval and define, 
for ZE R, 

Then 
mtz)2 =m(z)-eQtz) ep(J) eQtz) ep(Jc) 

and (1.5) follows from the estimate 

IteQtz) eptJ) eQ(z) ept~c).f)tx)l < IlfIILL(R) xl(x) 111 

for any function fe Y(R), where p denotes its Fourier transform. 



QUANTUM GAUSSIAN FIELDS 217 

We define the positive cone JZZ+ of an abstract topological *-algebra d 
as the closed cone generated by the elements of the form a* . a with a E d. 
Thus, by definition, a positive element of d is a limit of sums of elements 
of d of the form a* . a. With this definition it is clear that the map 
(X, Y) H [X, r]l is bilinear and positive, in the sense that 

is a positive element of d for each 1s T. We want to interpret it as a 
multiplication on a suitably restricted space of d-valued finitely additive 
measures. 

DEFINITION (1.). A complex vector space 9 of d-valued finitely 
additive measures is called an Ito algebra if it is closed under the operation 
of mutual quadratic variation, i.e., if [X, Y’J exists and belongs to 9 for 
each pair of measures X, YE 9. If we fix a basis of 9 then the brackets of 
any pair of elements of this basis is a linear combination of elements of the 
basis. The table which gives this linear combination for any pair of 
elements of the given basis is called an Ito table. 

Notice that the notion of Ito algebra depends both on the topology on 
d and on the way in which the limit (1.4) is taken. 

In this paper we prove that on the quantum fields, defined by any 
Gaussian (quasi-free) representation of the canonical commutation (or 
anticommutation) relations over an arbitrary Hilbert space, there is a 
natural structure of Ito algebra and we compute explicitly their mutual 
quadratic variations in both the Boson and the Fermion case. More 
precisely (cf. Section 5): by second quantizing measures with values in the 
algebra of bounded operators on some Hilbert space H (e.g., spectral 
measures) we associate to the usual field, creation, annihilation, and 
number operators in a given representation some measures with values in 
the (possibly unbounded) operators on the second quantized space. 

If the measures on H we started with form a commutative Ito algebra in 
the sense of Definitions (1.2) and (6.1), then the set of second quantized 
measures is also an Ito algebra, whose algebraic structure is constructed 
explicitly in Theorem (6.3). Moreover we prove that the Fock representa- 
tion can be characterized, among all the quasi-free representations, by the 
Ito table of the associated creation, annihilation (or fields), and number (or 
gauge) measures. 

The connection with the Ito tables considered up to now in classical and 
quantum probability is obtained by choosing H = L2(R + ) and by fixing the 
projection valued measure on R, to be 

e: (s, t) s R + H e(,,, = multiplication by x(~,~). 
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It is clear that the complelx multiples of e( .) form a commutative Ito 
algebra. There are, however, interesting examples of operator valued 
measures which are not of this type. For example, the number processes (cf. 
Section 4) naturally lead to the introduction of measures of the form 
T. e( .) or e( .) . T, where T is a bounded operator on H. The necessity to 
include these measures, and the fact that the passage from these to more 
general ones does not complicate in an essential way the techniques of the 
proofs, motivates our choice to consider an arbitrary Ito algebra of 
measures at the level of the one particle space. 

Even in the case when the Ito algebra is generated by a single projection 
valued measure, and the index set T is an interval in R, , our results yield 
a generalization and a technical improvement of the Ito tables obtained by 
Hudson and Parthasarathy [9] for the Fock representation of the CCR 
over the space L2(R+) (we consider only scalar valued test functions since 
the extension to the vector valued case is trivial), by Hudson and 
Lindsay [lo] for the universal invariant (finite temperature) representation 
of the CCR over L2(R+), by Applebaum and Hudson [5a] for the Fock 
and the universal invariant representation of the CAR over L2(R + ), and by 
Applebaum [4] for some quasi-free Gaussian representations of the CCR 
and the CAR over L2(R+). The generalization consists in the following 
facts: 

(i) Our one particle space is not restricted to be L2(R +) but is 
arbitrary. 

(ii) Being independent on the notion of stochastic integral, our 
method is representation free within the class of Gaussian representations. 

(iii) We can evaluate the mutual quadratic variation of a pair of 
processes which are based on noncommuting filtrations already at the level 
of one particle space. 

(iv) No commutativity condition between past and future is 
assumed. 

Of these generalizations for the moment, the most relevant is the first 
one. In fact one can construct examples of Gaussian quantum noises 
satisfying the “chaoticity conditions” of [2] but which are not reducible to 
Gaussian quantizations of spaces of the form L’(R+ ; K) (K-a Hilbert 
space). For such.quantum noises a stochastic integration can be developed 
on the lines of [ 1, 31. Therefore, in order to develop a full stochastic 
calculus for these noises, including the Ito formula, one needs to know the 
mutual quadratic variations of all the basic integrators, i.e., the results of 
this paper. 

The improvement consists in the fact that our Ito tables are established 
in the topology of the strong convergence on the invariant domain D 



QUANTUM GAUSSIAN FIELDS 219 

obtained by application of an arbitrary number of field and Weyl operators 
to the vacuum vector (cf. Lemma (3.1)), while all the above-mentioned Ito 
tables have been established in the topology of the weak convergence on 
the smaller and noninvariant domain of coherent vectors. The note [14] 
contains the evaluation of all the relevant mutual quadratic variations in 
the topology of weak convergence on the coherent states. In that 
framework the computations are considerably easier, but the results are not 
strong enough to handle even the simplest problems concerning, say, the 
“continuity of the trajectories” (cf. [3]). In this paper we limited our 
discussion to mean zero gauge invariant Gaussian fields but, as shown in 
[ 131, our techniques are applicable to the general case. Stochastic integrals 
for some representations of the CCR and CAR over the space L2(R+) have 
been considered in [5b] but the notion of mutual quadratic variation was 
not studied in that paper. 

As already said, the notion of Ito algebra and the corresponding Ito 
tables depends neither on the notion of stochastic integral nor on any 
filtration; in Section 2 we introduce a formal notion of stochastic integra- 
tion in order to show that, in case of a one dimensional index set and 
under the additional assumption that the increments of the integrator 
processes commute with the past litration, the Ito multiplication I., .jl is 
associative. Associativity turns out to hold, in the Gaussian case, also for 
multidimensional index sets and without any commutativity assumption 
(cf. Theorem (7.3) and the remark at the end of Section 8), however, we 
could prove this result only by an explicit calculation of the brackets up to 
fourth order since, in the multidimensional case, a general argument of the 
kind used in Section 2 is still missing. 

2. ONE DIMENSIONAL INDEX SET: 

ASSOCIATIVITY OF THE ITO MULTIPLICATION 

Let d be as in Section 1 and let M, N be finitely additive measures on 
R with values in d. Denote M(t) = M(0, t), N(t) = N(0, t) and assume that 
for each bounded interval (s, t) the limits 

lim 1 W,, b+ 1 
w&r) k 

)N(O, &)=:j-‘dA4.N 
s 

(2.1) 

lim c WO, b) Mb, b+ 1 )=: j’M.dN (2.2) 
ms, I) k s 

exist in &. We call (2.1) the left stochastic integral of N with respect to dM 
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and (2.2) the right stochastic integral of A4 with respect to 0. For any 
fixed dt > 0 introduce the notation 

dF(t)=F(t+dt)-F(t) (2.3) 

(where F is any d-valued function). Then summing the algebraic identity 

d(MN)=dM.N+M.dN+dM.dN 

over the intervals (tk, tk+ 1] of a partition 9 of (s, t], one finds 

M(t) N(t) - M(s) N(s) = 1 M(tk> tk + 1) NO, tk) 
k 

+ c M(O, tk) N(fk, tk + I ) 
k 

+xMctkv tk+l)N(fk, tk+l), 
k 

where the sums on the right-hand side are extended to all the intervals of 
the partition P. Since the limits (2.1) and (2.2) are supposed to exist in d, 
it follows that also the mutual quadratic variation 

exists in d. By construction one has 

M(t)N(t)-M(s)N(s)=j‘h4dN+j’dMN+[M,Nj(s,t), (2.5) 
s s 

which we can write symbolically in differential form: 

d(MN)=dM.N+M.dN+d[M,Nj. (2.6) 

Because of this connection between the notion of quadratic variation and 
that of stochastic integration, we shall sometimes use the symbolic notation 

d[X, a = dX.dY 

for finitely additive d-valued measures X and Y. 
Equation (2.6) above expresses the essence of It& formula to which it 

reduces when: 

- d is the real algebra of real valued measurable functions on a 
probability space (a, 9, P) (considered as a *-algebra with the trivial 
involution given by the identity). 
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- The topology on d is the topology of convergence in probability. 

- The finitely additive d-valued measures M are defined by 
M(s, t) = X, - A’,, where A’= (X,) is a real valued stochastic process on 
w-4 9, PI. 

- In (2.6), M and N are powers of a continuous martingale X, say 
M = 1”; N = X”. In this case, in the notation (2.3) above one has 

d(MN)=d(Xm+“)=(m+n)X”+“-‘0 

+(m+n-l)X”+“-*dX.dX 

from which one easily deduces the Ito formula for polynomials in X: 

df(X)=f’(X)dX+~f”(X)dX~dX 

=f’(X) dX+ ;f”(x) d[X, XJ. (2.7) 

Given a family of classical or quantum processes {X, (1): a E T; t E R + } one 
of the basic problems in the quantum stochastic calculus consists in the 
explicit evaluation of the mutual quadratic variations [X,, Xs] of all the 
pairs of processes in the given family. The notion of the Ito table intro- 
duced in Definition (1.2) can be extended by requiring that the mutual 
quadratic variation of any two processes in the family is a sum of finitely 
many stochastic integrals with respect to processes in the slame family-in 
symbols, 

[X,, X&t, t+dz)=dX&)dX&) 

for some adapted processes c;,~(s). The processes c&(s) are called, in 
analogy with the Lie algebra case, the structure processes of the family 
{X,(t)}. If the family of stochastic processes {X,(t): a E T; t E R + } admits 
a closed Ito table with structure processes c’, 8(s) = c’, B which are complex 
constants, then the linear combinations of the measures {&C,(t)} are an 
Ito algebra in the sense of Definition (1.2). In this paper we shall limit 
ourselves to this case because the above-mentioned extension depends on 
the notion of stochastic integral. 

The following theorem shows that, if the space of integrable processes is 
rich enough to separate the integrators, then, under the additional com- 
mutativity condition (2.8), the Ito multiplication is necessarily associative. 

THEOREM (2.1). In the notations above, let .d be an associative algebra 
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and let Xj (j= 1,2, 3) be finitely additive d-valued measures on R and let 
Fj: R + d (j = 1, 2, 3) be step functions such that the integrals 

Ii(t) := it Fj dXj; 
0 

1‘ Z,F, dXj; 
0 

s 
’ Zk dZj; j,k=l,2,3 

0 

exist for every finite t in the sense of (2.1), (2.2) and satisfy 

Assume moreover that for each t < u and for any three (adapted) processes 
Fj one has 

Then 

f”(f)CXk(U)-Xk(t)I = CX~(U)-XX~(~)I F,(t). (2.8) 

= 
s 

’ FlFzF3 4X,, Ex,, X,llll. (2.9) 
0 

ProoJ: Notice that, because of (2.8), it is not necessary to distinguish 
between right and left stochastic integrals. Therefore the argument at the 
beginning of this section and our assumptions imply that the quadratic 
variation [Xi, Xi] exists in d and the identity 

= ‘F,I, dXi+~‘ZjFjdXj+j’FiFjdl[Xj, Xi] 
s 0 0 

(2.10) 
0 

(Ito formula) holds. Because of our assumptions 

Fi dXi E d, i = 1, 2, 3. 

This, together with the associativity of the multiplication in d and Ito 
formula (2.10) will imply the associativity of Ito’s multiplication. To prove 
this we shall use the shorthand notation 

(G)j for the function t H s 
Gxco,<, dXj, j= 1,2, 3 

(G),j for the function t H Gxco,r, d[X,, Xi], i, j= 1, 2, 3 
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A:=[(jF,d-V).( jf’d&)].( jfW-0 

B:=( jFJK).[( jW&)-( jW&)], 
where throughout the paper x1 will denote the characteristic function of the 
set I. Using (2.5) we find 

A= jF,(F,),dX,+f(F,),F,dX, 
[ 

+jW’dl[-LX,l ].( jW%) 

= j FI (Fdz(F3L dXI + j (FI (FdA dx, 

+ j W%F, 4x1, X,ll + j (F,hI;,(Fd, dx, 

+f(F,),(F,),F,dX,+S(F,)1FzF~d[X,,X,II 

+j (F,),F,(Fd,dIX,,X,lj +~W’A,F,dX, 

+~F,F,F~ dm-,, ha, a. 
On the other hand, again using (2.5), we have that 

B=( jF,d~,)[jF,(F,W,+ 

+ j (F&f’3 dx, + j FIF3 4X,, X,1 1 
= fF,(F,(F,),),dX,+j(F,),(F,(F,),dX, 

+SF,F,(F,),~~[X,,~,~+IF,((F,),F,),~~~ 
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By the associativity of the multiplication in & we have that A = B. Com- 
paring the terms in A and B it is clear that the terms with integrators of 
the form [Xi, XjJ cancel. Consider now the terms which are integrated with 
respect to dX, in B. These can be written as 

s F, . C(J-*(F,M, + ((Fd*F3)3 + V*F3)231 .dXI 

but due to Ito’s formula (2.10) the term in square brackets is equal to 
(F2)2(F3)3. Hence the dX,-integrals cancel and similarly for the &,- and 
&,-integrals. So we are left with (2.9) and this ends the proof. 

Remark (1). The fact that an Ito algebra should be associative as a 
consequence of general arguments was pointed out to the authors by 
M. Schtirmann. 

Remark (2). In the above theorem we have specifiedneither the class of 
integrands (adapted processes) nor the class of integrators (semi-mar- 
tigales). However, all the properties required by the theorem are verified in 
the rigorous theory of stochastic integration developed in [3] (cf. [l] for 
a preliminary exposition). 

3. BOSON GAUWAN (QUASI-FREE) STATES 

In this section we recall known facts on Boson Gaussian (quasi-free) 
states and we prove the technical Lemma (3.2) which will be frequently 
used in the remainder of the paper. 

By a pre-Hilbert space we mean a vector space H over C with a non- 
degenerate scalar product denoted ( ., . ) which is real bilinear ,and satisfies 

<f,g)=<g,f); f,gEH. 

We will use the notation 

45 d = Wf, g>; f, gEH. 

Given a pre-Hilbert space there exists a unique C*-algebra W(H) with the 
following properties: 

(i) There exists a map W: H + W(H) such that the linear space 
generated by the W(f) (f e H) is dense in W(H). 

(ii) W(f)*= W(-f); fEH. 

(iii) W(f) W(g)=e-iu(Jg) W(f+ g); LgEH. 
W(H) is called the CCR (or the Weyl) algebra over H. In our notations 

the scalar product is conjugate linear in the first variable. A gauge invariant 
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regular mean zero quasi-free (or Gaussian) state with covariance Q is the 
state ‘p. on W(H) satisfying 

qe( W(f)) = e-‘l’2)(f,ef); fE H 9 (3.1) 

where Q is an operator on H satisfying 

<QL f> B llsll’~ Q~EH. (3.2) 

For the definition of a Gaussian state only the real linearity of Q is 
required. In this paper we restrict ourselves to complex linear Q, but our 
techniques are applicable to the case of a real linear Q as well. For a 
general mean zero Gaussian state the term gauge invariant means that Q 
is complex linear and not only real linear. Any state on W(H) is uniquely 
determined by the condition (3.1) and conversely any operator Q satisfying 
(3.2) defines a unique Gaussian state on W(H). The Gaussian state corre- 
sponding to the choice 

Q=l (3.3) 

in (3.1) is called the Fock state on W(H) and denoted cpl or qPF. Thus, be 
definition, the Fock state on W(H) is characterized by 

cpF( W(f)) = e-(1’2)“f”2; j-e H. (3.4) 

If {X’, 71, @} is the GNS triple [15] associated to the pair {W(H), qF} 
then 71 is called the Fock representation of the CCR over H. The Gaussian 
state corresponding to the choice 

Q=n.l, l~R+,tI>l (3.5) 

is called the universal invariant state with parameter L and its GNS 
representation is called the universal invariant representation (of the CCR 
over H) with parameter 2. 

When no confusion might arise the Gaussian state qa will be denoted cp. 
In the remainder of this section we fix a Gaussian state cp = qPe with 
covariance Q and denote {X, rc, @} the associated GNS triple. It is known 
that the GNS triple of the pair ( W(H), pa} can be easily described in 
terms of the Fock representation of the CCR over Hand over its conjugate 
space E which is defined as follows: 

(i) As a set f7 coincides with H. 

(ii) The identity map 1: fo H + r(f) E R is conjugate linear (additive 
and ~(1,) = Z(f)). 

(iii) For each f, g E H 

(3.6) 
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Notice that in this case the map A E B(H) + A E B(R) defined by 

Jdf) = Uf), fe H (3.7) 

is a conjugate linear *-isomorphism of a(H) onto w(R). 
Denoting (pF and (PF the Fock states on W(H) and W(R), respectively, 

and (xFp nF, @F}; {2F, ilF? gF} the corresponding GNS triples, and 
denoting 

(3.8) 

it follows that, if (2, rr, @} is the GNS triple of { W(H), qe} then the map 

n(W(f))HKF(W(Cf))Q~~-(W(Sz(f))) (3.9a) 

@HD,Q@F (3.9b) 

extends to a unitary isomorphism of the triple (2, rc, @} with the triple 
{XF@ %F@ 71,, OF@ 8F}. Thus in principle every quasi-free calculation 
can be reduced to a Fock calculation. However, since this reduction does 
not simplify the calculations in a significant way, we prefer to deal with the 
general case directly. 

LEMMA (3.1). For anyf~H, thefamily {z(W(tf))} (tER) is a strongly 
continuous unitary group and its generator B(f ), called the fteld operator in 
the representation 71, is such that for all n E N, and all g,, . . . . g, E H, one has 

Bk,). ... . Bk,) 4 Wf )I @ E D(B(g)). (3.10) 

Proof: This is standard result which follows by explicit computation 
from the CCR and the fact that the function t E R + cp( W(f + tg)) is 
analytic for all f and g. 

LEMMA (3.2). There exists a unique real polynomials P, in the variables 
Sl, -.., s,, t1.2, ..., t,- l,“, homogeneous of degree n if deg (sj) = 1, deg(t, j) = 2 
and independent on the Gaussian state qe such that for all n E N, and 
g,, . . . . g,, f, g E H, one has 

(4Vh))@, B(g,). ... .B(g,) n(Wf))@> 

= (n(Wh))@> 4Wf))@>P,(s,, . . ..s., f1,2, . . . tn--L,n) (3.11) 
with 

sj= i WQ(f - h), gj> + 4f + k gj); 

tt,j=Re<Qgi, gj) + idgi, gj). (3.12) 
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The polynomials P, satisfy the recursion relation 

P”l(Sl, a**> sn, Sn+l, f1,2, ..*7 f”,n+l) 

=S,+lPn(Sl, .-*7 S”, Il.29 . . .Y h-1,“) 

+ i aPn(Sl,..*,Sn9 tl,2,***, tn-ll,n)‘tj,n+l. 
j= 1 asj 

(3.13) 

Moreover the coefficients of the monomials in P, are 1 ifall the indices occur 
in the monomial, 0 otherwise. 

Remark. We write down the first five polynomials P,, some of which 
will be used in the following. 

P,= 1; pl(~l)=~l; PZ(Sl, s2, t,,,) = SlS2 + 11.2 (3.14) 

p3(slv s29 s3, t1,2> t,,3, t2,3)=SIS2S3+S1f2,3+S2t1,3+S3t1,2 (3.15) 

P4(SlY $2, s3, s4, t1.2, t1,3, t,,,, t2,3, t2.4, t3,4) 

=~l~2~3~4+~l~4~2,3+~~~~~l,~+~~~~~l,~+~~~~~l,~ 

+sls3t2,4+sls2f3,4+ t2,3, t1,4+ t,,, t1,3 + t3,4t1,2 (3.16) 

p5({sjIj==l ,..., 53 ttj,kIj,k= I ,.._, 5) 

=sls2s3s4s5+sls4s5t2,3+~2~4~5t,,3+~3~4~5t,,2 

+S2S3S5t1,4+Ssf2,3t1,4+~Sf2,4fl,3+~5t3,4fl,2 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+S4t1,3t2,5+S3t1,4f2,5+SlS2S4t3,5 

+Slt,,,t4,5+S2fl,3t4,5+S3tl,2t4,5 

+~3~1,5~2,4+~1~3,5~2,4+~2~,,5~3,4+~1~2,5~3,4~ (3.17) 

The general rule for P, is the following: from the set { 1, . . . . n} one picks k 
pairs (i,,j,) with 

a = 1, . . . . k; k = 1, . . . . [n/2] = integral part of n/2 

then one forms the products 

and one sums all these products over all the k and all the choices of the 
(i,, j,); this gives P,. 
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Proof The result is proved by induction on n. The lemma is obviously 
true for n = 0, 1. Suppose now that it holds for n = 0, 1, . . . . k. Then we have 

<4Wh)PR Wg1). ... .mk) ~(&+1) 4Wf)P) 

=$p(W(hwml~. ... 

. B(g,) n( W(lgg,+, +f)@) e-iio(gk+“f)]l=O 

=& C(n(Wh))@, 4WkZgk+* +./-I@> 

.e-iia(gk+‘,f) Pk(.sl(A), . . . . s,(A), fl,*, . . . . fk-l,k)]l=O, (3.18) 

where tLj is as in (3.12) and 

sj(n)=iRe(Q(~gZg,+l+f-h),gj)+a(12g,+l+f+h,gj) W9a) 

so that 

d 
--sj(n)=tj,k+l. id1 

(3.19b) 

Moreover 

$ [(n(W(h))@, n(W(A.ggk+l +f)@) epii.o(gk+‘,f)]A=O 

=& [(@,, ~(W(~gk+l+f-h)@) ~-u”(gk+l./)-i~o(gk+I+f,h)]~=O 

=& Ce- 
(1/2)<Q(~gk+I+f--h),~gk+l+f--h)+ilo(j+h,gk+l)+ilo(h,f) Ii=0 

=e -(llz)<Q(f~h),f--h)+ilu(h,f) ‘CRe(Q(f-h),g,+,)+a(f+h,gk+l)l 
= (4Wh))R II(Wf sk+l. (3.20) 

Using (3.19) and (3.20) to compute the derivative in (3.18) we find the 
result. 

If no confusion can arise from now on we shall suppress the notation A 
for the representation and in the sequel we shall use the notation 

D:=linearspanof{B(g,)- ... .B(g,) W(f)~:n~N,g~,...,g~,f~H}. 
(3.21) 
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By Lemma (3.1), D is an invariant domain for all the field operators B(f). 
Moreover from the CCR one easily derives the relations 

Wf+ g) = B(f) + ml, Wf) = Wfh AER (3.22) 

CB(f), m)l c wf, g) (3.23) 

w(f)* B(g) W(f) = wf, g) + &Y), (3.24) 

all the relations being meant on D. From (3.24) it follows that D is also 
invariant under the action of the Weyl operators W(f). 

COROLLARY (3.3). Zf Ti”, ,.., T(“+‘) are n+ 1 nets of operators on H 
converging strongly to T(l), . . . . T’“+“’ on H then for all g,, . . . . g,, f E H one 
has 

limB(T”)g,). . . . .B(T’“)g ).W(T’“+” OL a n OL f)@ c( 

=B(T"'g,). . . . .B(T’“‘g,). W(T’“+“f)@. 

Proof This result follows in a straightforward way from Lemma (3.2). 

COROLLARY (3.4). Ifg,, . . . . g,, f E H, then 

Wlf) - 1 
lim &rl).--4gn) il = ml). . . &L) B(f) 
i-0 

strongly on D. 

Proof This result follows from Lemma (3.1) and from the relation 
(3.24). 

4. NUMBER FIELDS 

Let H be a pre-Hilbert space. By .9&(H) we denote the set of all bounded 
linear operators T on H such that the unique continuous extension T of T 
to the completion of H has the properties 

where 

T,HcH; T,HcH 

ei”lH E H; eitT2H E H, VtoR, 

T, =;(T+ T*); T*=;(T-T*) 

are respectively the self-adjoint and anti-self-adjoint parts of i7 
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Remark that if TE.!&(H) then T*Hc H. We will denote the restriction 
of T* to H by T*. Clearly T* E L&(H). If TEL&(H) is such that T is self- 
adjoint we will denote the restriction of eitT to H by e”‘. 

Clearly, if H is a Hilbert space then aj(H) = kS?( H). However, in some 
physical examples the covariance Q of the Gaussian state is unbounded, 
hence its domain is only a pre-Hilbert space and therefore, as will be 
evident in the following, the notion of L&(H) will be needed to define the 
number fields. 

Consider now the Weyl C *-algebra W(H) over a pre-Hilbert space and 
the Gaussian state rp as described in Section 3. Take TE 9$(H) such that 
T is self-adjoint. Then it is known that the map W(f) E W(H) H 
W(eifTf) E W(H) defines a one parameter automorphism group of W(H) 
which we denote by a:. If 

[Q, eifT] = 0 

for all t E R or equivalently if 

cpoa,T=cp 

for all t E R then a: can be implemented unitarily in the GNS representa- 
tion, i.e., for each t ER there exists a unique unitary operator UT on Z 
such that 

7coaT= UT-7t(.).U,T’; UT@=@ 

or equivalently 

Uy7c( W(f))@ = x( W(e”‘f))@ 

for all f E H. 

PROPOSITION (4.1). The one parameter family UT is a strongly con- 
tinuous unitary group. Denoting by NT its generator and by D the dense 
subspace of X defined in (3.21) we have that 

D E D( N,); N,(D) ED. 

Moreover, for each n E N, g,, . . . . g,, f E H we have that 

N,.B(g,)- .-- .&IL) Wf I@ 

= -i f: B(gl). ... .B(iTg,). ... .B(g,)+B(g,). ... 
j=l 

~4gJ~4iTf)-Bkl)~ ... ~Bk,)~(f, ?‘f )) WfP. (4.1) 
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ProoJ Using Corollary (3.4) it is easy to check that 

U;B(gJ. ... -B(g,) W(f)@ = B(eifrgl) . . . . -B(eifrg,) W(eif7f)@. 

Hence, 

= -i i B(g,). . . . . 
&P-g. - g,) 

il . .** .m!J Wf)@ j=l 
+ fq gl) . . . . . B( g,) . w’e”Tf;t- @‘If) . @* (4.2 1 

By Corollary (3.4), as t + 0, the sum in the right-hand side of (4.2) 
converges to 

-i i B(g,), ..f . B(iTgj). . - * -mL) w”)@* (4.3 1 j=l 
So we have to show that 

lim B(g,). ... .B(g,). 
II [ 

W(eitrf) - W(f) 

t+O it 

- (B(iTf) + (I; Tf>) WY Q, = 0. 1 /I (4.4) 

Now 

- MiTfl+ (f, v->) 1 II Q, 

= B(g,)* **a alI( /j [ 
pqeifTf-f) eW@%/) _ 1 

it 

- (B(W) + <I; TO) 1 II WW 

is surely majorized by the sum of the four quantities 

IPk,). ... .B(g,). CWe”‘f-f)-11 WY4 
I,idr%r) _ 11 

I4 (i) 
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h IleTl)~ . . . .B(g,). [W(eifTf-f)- W(itTf)] W(f)@11 (ii) 

II &Yl). ... .&L). [ 
W(itTf) - 1 

it -B(W) W(f)@ 1 I/ (iii) 

ll~kl)~ ... . WJ Wf)@ll . 
eiHe”rf /I _ 1 

it +<f,Tf). (iv) 

It is clear that the quantities (i) and (iv) tend to 0 as t 3 0 and, because 
of Corollary (3.4), also the term (iii) tends to zero. So it remains to show 
that the term (ii) tends to 0 as t + 0. To prove this, notice that the term 
(ii) is majorized by the sum of the two expressions 

i II&Y,). ... .B(g,).[W(e”Tf-f)-W(itTf+f)]~)I (iia) 

llB(gl), ... .B(g,). W(itTf +f)@lI i leia(P”‘~f)-e”<~f)l. (iib) 

Since (iib) tends clearly to 0 as t 40, it remains to estimate (iia). To this 
goal notice that, because of Lemma (3.2), the square of (iia) is equal to 

; Cb?(p (1) 
9 .‘.T 32” , t,,,, .*., zn- 1.2”) t 

- ~Z,($)~ ..‘> S:2,)? t1.2, . . . . I,,- 1,&J 

- P2n(S\3), . ..? s:y, t1,2, ,.,, t2+1,2”) 

+ ~Z,(S(p)~ ..*, gn’, t1.2, . . . . t,,- &I 

+ j!j [ 1 - ( W(eifTf )@, W(eifTf +f)@)] 

x &“(p> . . . . sg’? t1.2, . . . . t2n-l,2n) 

++ Cl- (W(eirrf +f)@, W(eifTf)@)] 

x P2”(43)v . . . . & f1,2, e.9 t2n- 1,*J, (4.5) 

where we have used the notations 

p(j)=nf 1 -j for 1 <j<n; p(j)=j--n forn+l<j62n 

s(l) = 20(eifTf g,,,,) I 
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s~)=iRe(Q(itTf+f-ei”f), g,cn)+o((itTf+f+ei’Tf), g,(,,) 
s!3) = $2’ 

J J 

d4) = 2o(itTf+ f g,,,,) 
J 9 

ti,j= Re(Qgpwy g,(j)) + idg,(i), gp(j)). 

It is easily seen that the last two terms of (4.5) vanish at I + 0 and, since 
the polynomials P,, are homogeneous of degree 2n (with deg sj = 1, 
deg rii= 2) and the ti, j independent on t, our statement is equivalent to 
proving that 

- s(3)s(3) . . . 
kl k2 

sit; + s&g . . . sg ] = 0 (4.6) 

for 12 1 and k,,k, ,..., k,,~ {l,..., n}. But (4.6) follows in a straightforward 
way from the fact that for all Jo { 1, . . . . H} and for all h, k = 1,2, 3,4, one 
has 

S!h) (f = 0) = s!k’ (t = 0) 
J J 

Now let TE L?# such that for all t E R 
[Q, ei”l] = [Q, eiiT2] = 0, (4.7) 

where TI, T2 are respectively the restrictions of the self-adjoint and anti- 
self-adjoint parts of T and H. Then both N,, and N, are well defined on 
D by the preceding discussion and we denote 

NT= NT, + iN,. (4.8) 

Notice that D is a invariant domain for N,. In the following we shall 
denote Y(D) the vector space of all linear operators with invariant domain 
D and by $JH), a *-algebra, for the usual operations, of operators 
XE 6!&(H), satisfying (4.2) and closed in g(H) for the fopology of strong 
convergence on H. 

PROPOSITION (4.2). The map N: TE BQ (H) + N, = N(T) E Z(D) is 
complex linear in the sense that 

N(aT, +bT,)=aN(T,)+bN(T,). (4.9) 
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Moreover 

N(T*)=N(T)*, (4.10) 

where both equalities hold on D. 

ProoJ: The statement (4.4) follows from (4.3) and the explicit action of 
N,, for TE A?o (H), given in Proposition (4.1). Using the same proposition 
one easily sees that 

(NP~, v> = CL N,v) 

for all 5, q ED, which implies (4.10). 

5. MUTUAL QUADRATIC VARIATIONS OF QUANTUM FIELDS MEASURES 
WITH RESPECT TO GAUSSIAN STATES 

Keeping the notations of the preceding sections, from now on we fix a 
complex pre-Hilbert space ZZ, a mean zero gauge invariant Gaussian state 
rp on W(H) with covariance Q and GNS triple {X, n, @}, a measurable 
space (T, %?), and a *-algebra go(H) as defined before Proposition (4.2). 
We shall denote A!(T; go(H)) the vector space of all go(H)-valued 
finitely additive measures on .9+Y and write ZC T to mean that ZE T and 
ZEN?. The field operators B(f) (f~ 2) and the number fields N, 
(T E B(H)) are defined as in Sections 3 and 4; the domain D is defined by 
(3.21) and Y(D) is defined before Proposition (4.2). 

Using the real linearity of the mappings XE 99o (H) H B(Xf) E Y(D) and 
XE ~8~ (H) I+ N, E S(D) one can lift finitely additive measures on (T, .G#) 
with values in go(H) to (second quantized) measures Afx, Af=, Bfx, N, 
taking values in Y(D). 

DEFINITION (5.1). For XE .A( r; Bo (H)) and f~ H define the measures 

Bfx(Z) = wwu-1 (5.1) 

Afx= i [Bc- iBfx], (A<) + = A$+ = 4 [B$ + iB’,] (5.2) 

N,(z) = Nxcq (5.3) 

for all ZC T and XE .M(T; go(H)). 
The measures Bfx, Afx, A$+, NX together with the scalar measures 
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will be called the basic integrators. In this section we compute their mutual 
quadratic variations. In order to achieve this goal we introduce the follow- 
ing regularity conditions which roughly express the nonatomicity of the 
measures involved. 

DEFINITION (5.2). A go(H)-valued measure X on (T, 93) will be called 
regular if for each ZE T one has 

k 

lim c I(x(zl)f, x(zk)g)i2=o 
(4) Es(r) k,, 

VA gEH 

(5.4) 

(5.5) 

and if for some constant M,, every fin D, and every partition (Zk) EB(Z) 

F ilx(zk)fl12 G M, lb-/l 2. (5.6) 

Two go(H)-valued measures X, Y are called jointly regular if both X and 
Y are regular and for every f, g in H 

lim c I<x(z,)f, y(zk)g)12=o 
(k)Eb(O k,[ 

% geH. 

In agreement with the notation introduced before Definition (l.l), we 
shall denote 

A(T; SJQ(H)) resp. &?(T; L?(D)) (5.8) 

the vector space of all %?o (H)-valued (resp. L?‘(D)-valued) regular finitely 
aditive measures on B. 

LEMMA (5.3). Zf X, YE &(T; aQ(H)) are regular measures on T then: 

(a) for allf, ge H and ZE Tone has 

lim 1 I(f, x(zk)g)l y(zk)=o 
(Ik)E5YO k 

in the strong operator topology on H, 

(b) for all g,, . . . . gn,g,f,f'EHonehas 

(5.9) 

eB(&)‘~B(Xkd <J ykf’>=o (5.10) 
k 

strongly on D. 
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ProoJ: Part (a) follows from the regularity conditions since 

II 
; I (f, Vk) g)l Wk)h 

II 
112 112 

G c I(.L Wkk>12 
( 

. 
k ) ( 

. ; IImvl12 
) 

Part (b) follows from Lemma (3.3), (a) and the real linearity of the fields, 
since 

; B(Xk g) ’ (f, Ykf’) 

LEMMA (5.4). Let X, YE AQ( T; S?(H)) be two jointly regular self-adjoint 
measures such that [X, yll exists strongly on H, i.e., for all ZG T, f E H one 
has 

lim 1 x(zk) Y(Zk)f = [IX3 fl(I)$ 
(Ik)Eb(O k 

(5.11) 

Then for each f, ge H the bracket [B$, B/,] exists strongly on D and, on 
this domain, the following identity holds: 

IBgy,BfXD=Re([[X,Ylig,er>+iIm<gx,yqg,f>. (5.12) 

Proof Using the shorthand notation X,, Yk instead of x(Zk), Y(Z,), we 
have to prove that 

~B(Y,g)B(X,f)~Re(Qg,I[Y,xnf>+iIm(s,I[y,Xllf> (5.13) 

strongly on D. To this goal denote 

z=Re(Qg,CY,XIJf)+iIm(g,[[Y,Xllf) (5.14) 

z,=~B(Y,g)B(&f)-z. (5.15) 

Then we have 

(5.16) 
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The first term of the right-hand side of (5.16) equals 

IK 
C2iImWk.L gl)Wkd 
k 

+~2iIm<Yk& 81) B(Xkf) ‘B(&)’ -” ‘B(&) W(h)@ 
k > II 

and by Lemma (5.3) and Corollary (3.3) this tends to zero in the limit of 
finer partitions. So we have to show that 

II~(g,)~Zp~&T2)~ ... .&L) Wh)@ll +a 

By repeating the commutation argument above, we see it is sufficient to 
prove that 

II%l)~m,)~ ... ~~k,)Zp~ Wh)@ll +o. (5.17) 

First we check that 
IIZ, . Wh)@lI + 0. (5.18) 

Denote 
xk=2<hxkf); y,=2(h, yk.f > (5.19a) 

ri,j=Re(QXif, Yjg) +iIm(Xif, Yjg) (5.19b) 

si,i=Re(QXif,xjf)+iIm(xif,xjf) (5.19c) 

ti,j=Re(QYif, Yjf) + iIm( Yif, qf) (5.19d) 

then, using Lemma (3.2) we find 

-2Re ,? W(h)@,~B(Y,g)&t&j-) W(h)@ 
(( 

+ lz12 
k 

+ YIXkrl,k + YkXkrl,l+ rI,ITk,k + rl,krk,l+Sl,ktl,k) 

?c (ykxk+rk,k) + lZ12 
k > 
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and this tends to zero by the arguments 

and the right-hand side tends to zero by the regularity of X and Y. Further- 
more 

+4lIm(Q(~Ykxkm),~XiYig)~, 

which tends to zero by Lemma (5.3)(a). For the same reason 

tend to zero. Moreover 

G2c I(xla ykg)i2+2c I(xlf, ykg)i29 

1, k Lk 

which tends to zero by the joint regularity of X and Y. One has also 

and again this tends to zero by the regularity of X and Y. Finally, since by 
assumption [X, YJ exists in the strong operator topology, then 

In conclusion 

lim l~Z,~W(h)~ll=lim((z~2-2Re(~~rk,k))=0 
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and this proves (5.18). With exactly the same arguments one can check 
that 

lim l/Z,* I W(h)@ll = 0. 

In order to prove (5.17) we use again the commutation argument (5.16) to 
reduce the problem to prove that 

( W(h)cP, Z,*Z$(h,) . . . . * B(h,) W(h)@) + 0. (5.20) 

This can be done by an induction argument. We checked already that 
(5.20) holds for m = 0. Suppose now it also holds for m = 1, . . . . n - 1. Then, 
by Lemma (3.2) and the recursion formula (3.13) we have 

( W(h)q Z,*Z,B(h,) . . . . *B(h,) W(h)@) 

=z,(W(h)@,Z,*Z,B(h,). ... .B(h,-,) W(h)@) (0 
n-1 

+ 1 (W(h)@, Z,*Z,B(h,). ... -ii(hj). ... .B(h,) W(h)@) tj,n (ii) 
j=l 

+c (W(h)~,B(Ykg).Z,B(h,). “* ‘B(hn) W(h)@)uk,, 
k 

+I (W(h)@~ B(Xkf)-Z,B(hd- -‘* ‘B(hn) W@)@) Uk,n 
k 

+c (W(h)~,Z,*.B(Xkf)B(h,)’ ‘*’ ‘B(h,) W(h)@)uk,, 
k 

+C(W(h)~,Z,*'B(Ykf)B(h,)' '** 'B(h,) W@)@)"k,,, 
k 

where 

z,=Xh, h,), tj,,=Re(Qhj,h,)+iIm(hj,h,) 

uj,,=Re<QXjf, h,) +iIm(xjS, 4); 

uj,,=Re(QYjg,h,)+iIm(Xjg,h,). 

By the induction hypothesis both (i) and (ii) tend to zero. Also 

. 
(II 

CB(Re<fi!Y&, k) xkf) B(h). *.* .B(h,) W(h)@ 
k II 

+ CB(((Ykg,h,))Xkf)B(h,)' "' 'B(h,) W(h)@ ii 
3 

k 

(iii) 

(iv) 

(VI 

(4 
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which tends to zero by (5.18), Lemma (3.3), and Corollary (3.3). 
Analogously (vi) --, 0. Finally, 

Itiii)l = $ (W(h)@7 B(Ykg)‘ZpB(hl)e “’ ‘B(h,) W(h)@) Uk,n 

c (z,*. W(h)@, [B(Re(QYkf, h,) ykg) 
k 

+ 2 c (W(h)@~ CB(( yjg, xkf>? y,g) 

I, k 

+B(<Y,g, ylg) xkf)l ‘B&)’ ‘-- ‘B(h) W(h)@) h,,, (5.21) 

and the first term in the right-hand side of (5.21) tends to zero for the same 
reason as for the term (v). The second term tends to zero by Corollary 
(3.3), in fact 

II, 
2 bk,ni ((ykg, x,f>, y,g) 

II 

and the same upper bound holds for 

II, ; bk,nl ((ykg, y,.f>, x,g) . 
/I 

From this our statement follows since this upper bound tends to zero by 
the regularity of X and Y. 

COROLLARY (5.5). Let X, Y be as in Lemma (5.5). Then for all 
g,,...,g,,g,f,,...,f,,f~H 

($y& c ml) . “’ ‘Bkn) B(Y(zk)g) B(fl)' "' 'B(L) B(X(lk)f) 
k 

=B(g,). ... ~m,)~(fl)~ ... ~B(fJCWltX pg, Qf> 

+iIm<lIXYDg,f >I (5.22) 

strongly on D. 
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Proof: Since 
CWYkg), &fj)l~2iIm<Yk&gj) 

in (5.22) we can, because of (b) in Lemma (5.3), commute B( Y,g) and 
B(X,f) to the left. Therefore the thesis follows from Lemma (5.5). 

COROLLARY (5.6). Let X, Y be as in Lemma (5.5) and A$, A$+ as 
defined by (5.2). Then 

UAf,,AgZI!= Ux, .,~,) 
( 

(5.23) 

[A$+, A$] = 
( 

q II-F n g) (5.24) 

[A;, A$] = [A$+, A$+ ] = 0, (5.25) 

where as usual all the identities are meant on D. 

Proof: The identities (5.23), (5.24), (5.25) follow from (5.12) using (5.7) 
and the complex bilinearity of the brackets. 

THEOREM (5.7). Let X, YE J%?( T; &JQ (H)) be self-adjoint jointly regular 
measures such that [X, Uq exists strongly on H. Then the brackets 

uwm m, Afn, [I~JV,~, rw,,~~n, IA~=,N,D 
exist in the topology of strong convergence on D. Moreover the following 
relations hold on D (the hat on a symbol means that it is missing): 

(r~X~~,Il ml). ... .mL) W(h)@ 

. CRe(Qgj,, U-F VI gjz> + iIm<gj,, U-F yll gjz> 
+WlIX YDgj,,Qgj2)+iIm(Ux, rilgj,, gjl)l 

-i i B(g,)* ... .B(gj). .-. *B(g,) 
j=t 

XRe<UX ullgpQh)+iIm<%X rllgj,h) 

+Re(Qgj, U-K yllh>+iIm(gj, U-K YDh)l 

+ i B(g,)- *.. -NUX, rll gj)- .*- .%“I 
j=l 

+lqg,). ... .B(g,).B(BK YDh)+iNg,). i.- .B(g,) 

d?MUX yllh,Qh>+iIm(UX U’l.Lf)l] Wh)@ (5.26) 
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(5.27) 

(5.28) 

-ii E$! 

( 
f, Ix, y4 (I) g j  

j=l > 

.B(g,)- ... .B(gj). ... *B(g,) W(h)@ 

Ia+? NYnu) ml). ... *m”) Vh)@ 

(5.29) 

-' f: Ix3 ,Ogj,~f) 
j=l ( 

-II( -.. .B(gj). ... *B(g,) W(h)@. (5.30) 

Proof. Let X, YE M( T; aQ (Zf)) be as stated in the theorem. Then for 
every Zc T and for every partition (In) E 9(Z) we have, using Proposi- 
tion (4.1), 

= -i f N,,B(g,). ... .B(iYkgi). ... .B(g,) W(f)@ 
j=l 

+N,.B(g,). .*. .B(g,).B(iY,h) W(h)@ 

-N,Bk,). ... *mnKk Y/3) W(h)@. (5.31) 
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And, again by Proposition (4.1), this can be written as the sum of the terms 

- c B(gl)*B(iXkgj,)* ..’ *B(iYkgi,). ... ‘B(g,) W(h)@ (1) 
lCjlcj2Sn 

- 1 B(g,). -.. .Z3(iY,gj,). ... .B(iXkgjJ. . . . .B(g,) W(fl@ (2) 

+ i B(g,). --. .B(X,Y,gj). -*. *B(g,) W(h)@ 
j=l 

-i i B(gJ. . . . .B(iY,gj). ... eB(g,)B(iXJz)~W(h)@ 
j=l 

-i i B(g,). e.. .B(iYkgj)* .f. .m”)(h, X/J) + Wh)@ 
j=l 

-i i B(g,). se. . B( ix, gj) ’ . . . .B(g,) B(iY,h). W(h)@ 
j=l 

+iB(g,) . .-. -m?J NXk Y/d) WhP 

+B(g,). ... .eJ B(Y/$) B’(Xkh) Wh)@ 

-B(g,)- -.- -&L) B(iYd)<k X&j Jvh)Q, 

fi i B(g,). es- * B(X, gj) . . * . *&Lr)(k Y/d) Wh)@ 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

By point (a) of Lemma (5.3) we see that, after summing over k, the term 
(12) will tend to zero in the limit of infinitely fine partitions of I. By point 
(b) of the same lemma the terms (5), (9), (lo), and (11) will also give zero 
contributions to [[IV,, NY]. By Corollary (3.3) and the real linearity of 
f++ B(f), the contributions of (3) and (7) will be respectively 

j=l 

iB(g,). ... .eL).WX rlJhh)* Wh)@. (74 

Finally, by Corollary (5.5) the contributions of (I), (2) (4), (6), and (8) 
can be respectively written as 

- c B(g,)* *.a .B(g,,). ... .B(gi,). .‘. .B(g,) W(h)Q, 
lbjlij2<n 

* CRe<Qgj,, 6X rll gj,> +iIm<gj,, 1x3 YD gjz)l (la) 

580/85/Z-3 
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- 1 B(g,). ... .z3(gj,). ... .S(gi,). ... .B(g,) W(h)cs 
l<jlxj2Cn 

DW(TX Y11gj,,Qgj2>+iIm(lK ullgj,,gj2)1 

-i i B(g,). ... .B(g,). ... .B(g,) W(h)@ 
j=l 

.CRe(lIX rllgpQh)+fIm(bK Yllgj,Qh>l 

(24 

Pa) 

-i i B(g,). ... .&gj). . . . .mn) Wh)@ 
j=l 

.CRe(lIX rlih,Qgj)+iIm([IX yllk gj)I (64 
+B(g,). ... .Btg,) Yf)@ CRe(lIlX Ulh, Q~>+iIm<[EK Kllk Qh>l. 

@a) 

Thus we conclude that 

= [IN,, NYnu) %I). **- *Bk,) Wh)@ 
= (la) + (2a) + (3a) + (4a) + (6a) + (7a) + (8a) 

and this proves (5.26). 
The verification of the identities (5.27), . . . . (5.30) is based on exactly the 

same techniques as above. We conclude the proof of the theorem by a 
description of the strategy through which all these identities are proved. 
We believe that, by doing so, we shall provide the reader greater insight 
than by proving one by one all the identities. 

Let X, Y be two go(H)-valued measures and let M,, L, be two of the 
associated 9(D)-valued measures (e.g., Bfx, N,, . ..). Writing down 
explicitly the action Of M,(Zk) . L y(Zk) on a Vector in the domain D, Only 

the following four kinds of terms will occur: 

(a) terms containing the products of matrix elements of x(Zk) and of 
Y(Z,) (cf. the term (12) in the above computation); 

(b) terms containing the product of a matrix element of X(Z,) with a 
field B( Y(Zk)f) (cf. the term (5) in the above computation); 

(c) terms containing a field evaluated at the product of the two 
measures B(X(Z,) . Y(Z,)g) (cf. the term (3) in the above computation); 

(d) terms containing the product of two fields B(X(Z,)g,) and 
B( Y(Zk)gz) possibly sleparated by a product of field operators (cf. the term 
(6) in the above computation). 
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The terms of type (a) or (b) will not contribute to the brackets by 
Lemma (5.3) (a) and (c). 

By the real linearity off- B(f) and Corollary (3.3) the terms which are 
of type (c) will give a contribution where the factor B(X(Z,) . Y(Z,)h) is 
replaced by B( [X, yll h). 

Finally, by Corollary (5.5), the terms that belong to the class (d) will 
give rise to a contribution where the factors B(X(Z,)h) and B( Y(Z,)h) are 
replaced by a scalar factor. 

6. THE GAUSSIAN ITO TABLE 

The basic integrators 

Bfx, Afx, A?, Nx, CL W.)g), 

f,geff, -& Y~JQT;wo) (6.1) 

can be defined for any representation (X, rr} of the CCR over a Hilbert 
space H as elements of .N(T; 9(D; 2)). Taking Ito products (i.e., 
quadratic variations) of the basic integrators we can form new elements of 
A( T; 9(0; 2)) called lst-order integrators. By induction we can define 
an nth-order integrator as the Ito product of a basic integrator with an 
(n - l)st-order integrator and a (p, q)th-order integrator as the Ito product 
of a pth-order integrator with a qth-order one. A pleasant feature of 
Gaussian representations is that for them this hierarchy closes at the 
second order, i.e., the Ito product of two first-order integrators as well as 
any second-order integrator can be expressed as a linear combination of 
first-order integrators (provided the underlying measures satisfy the com- 
mutativity condition of Definition (6.1)). In Section 7 we shall prove that, 
even without this commutativity condition, the closure of the hierarchy at 
the first order is a characterizing property of the Fock representation. 

DEFINITION (6.1). We say that two regular measures X, YE 
A( T; 9o (H)) Ito-commute if both IX, yD and [Y, XJ exist and [X, YJ = 
cy, XL 

DEFINITION (6.2). Let 9 be an Ito algebra in A( T, BQ(H)). We say 
that 9 is regular if all X, YE 9 are jointly regular in the sense of Delini- 
tion (5.2). 9 is called self-adjoint if for all XE 9 and all ZE T, the measure 
X* defined by 

belongs to X. 

x*(z) =x(z)* 
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THEOREM (6.3). Let 9 be an associative, Ito-commutative, regular, self- 
adjoint Zto algebra in M(T, Be(H)). Then, for any operator C in Y(D), 
denoting Cx either C itself or its adjoint, the following statements are true: 

(i) The linear span of 

{CL W.)g), m Nx3 irAp, NJ, 

IIN,, A$#4 IIN& Ndl; 3 f,gEH,X YES} 

is an associative self-adjoint Ito algebra X in y(D) for the multiplication 
6.9 .I]. 

(ii) (Associativity of the Ito Multiplication) For all C,, C,EX we 
have that 

6c,, a*= EC:, c:n 
and for all self-adjoint X, Y, Z E 9 one has 

(6.2) 

wIIx,,, wn = mf,, c,.ln~ (6.3) 

where M, and ML stand for A$# or N, . 

(iii) Using (6.2) and (6.3) and the associativity, the algebraic structure 
of X is completely determined by the relations (5.23), (5.24), and (5.25) and 
by the following relations which hold on the domain 9 for allf, g E H and all 
self-adjoint X, Y, Z E 9: 

IN,, A$] = -A&, rll + [A$#, NJ (6.4) 

IL@, %Agy#r wn =o (6.5) 

lb%, IINY, NJ1 = II&, &r,zJ (6.6) 

IIN,, 6Nn Nzlll =NIIx,,,,,. (6.7) 

Remark (1). From (6.2) it follows that all brackets in the Ito algebra 
S exist not only in the topology of strong convergence on 9 but even on 
the topology of strong-* convergence on 9. 

Proof of Theorem (6.3). The validity of (6.3) and (6.4) follows 
immediately from Theorem (5.7), the associativity, and the Ito-com- 
mutativity of 9. Therefore the theorem will be proved if we show the 
validity of the relations (6.5), (6.6), (6.7) and of the following list of 
relations (for all f, g E H and all self-adjoint X, Y, Z, VE 9): 
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(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

The verification of (6.3), . . . . (6.23) is done with the same techniques we 
already discussed in Theorem (5.7). We shall omit the details. However, in 
order to illustrate the role of the condition of Ito-commutativity in the 
proof, we shall prove that (6.7) holds on the vectors of the form W(h)@. 
To prove this we compute, for all Ic T and h E H, 

using the shorthand notation xk and [Y, 4, instead of x(1,) and 
[[Y, ZJ(Z,), Proposition (5.3) and Proposition (5.6) imply that 

Nx(zk). uNYp Nzn(zk) W(h)@ 

’ [B(i.t--k) - (h, X,$)] W(h)@. (6.24) 
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By Lemma (5.3) the third and the fourth terms vanish in the limit when 
they are summed over k. By Lemma (3.3) the first term in the limit gives 
the contribution 

and by Corollary (5.5)(c) the contribution of the second term is 

OWCJf, iTY,zDII(Z)h,iQh>+iIm([Tx, iIY,ZH(Z)h,ih)l W(h)@, 

which, due to the self-adjointness and the Ito-commutativity of X and Y, 
is equal to 

- (A, 1x9 iIy> zllil(z)~) Wh)@. 

Thus in the limit and when summed over k the right-hand side of (6.6) 
converges to 

which (cf. Proposition (4.1)) is equal to the left-hand side of (6.7). 
The only kind of Ito algebras considered up to now in the literature 

are those corresponding to the choice of a single spectral measure 
e: Zc T + e(Z) E Proj(H). In this case [e, e]l = e hence the complex multiples 
of e form indeed a commutative Ito algebra which is full in the sense of 
Definition (7.1) since 

e(T) = 1. 

The Gaussian Ito table corresponding to this Ito algebra assumes a par- 
ticularly simple form. In order to describe it in the most economical way, 
it is convenient to introduce the following notations: Aq Af+, N will 
denote respectively AL, A?, N,; and the 9(D)-valued measures Si are 
defined by 

SC = [[/if+, N-J = --Af+ + [N, /if+] (6.26) 

si = [Af, N-J = Af+ [N, &a. (6.27) 

Moreover if we agree to use exchangeably the symbols X and dX dor a 
generic measure X and if for any Y(D)-valued measures A& L we use the 
notation 

dM.dL=d[M, L] 

then the Gaussian Ito table for the measures Af, Ar+, N takes the form 
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/” dAg+ dN dAg dN.dN dSp, dS: 

dA/ (de4 i(Q+ l)g) dS/ 0 dS: 0 0 

dN dAg+ +dSg + dN.dN -dAg + dS5 dN 0 0 

dA ‘+ 0 dS’, <de.& &Q-l).0 -dSf, 0 0 

dN.dN dAg+ +dSg 

;,g> 

dN 0 dN.dN 0 0 

dS/ (h.i ;(Q+ dS/ 0 dS’_ 0 0 

dS/, 0 -dSf, <de.g, t(Q-1l.f> -dS/, 0 0 

where the brackets with the scalar measures have not been included since 
they are all zero. 

Notice that, in the Fock case (Q = 1 ), Sf = Ar and S ( = 0. Therefore in 
this case the Ito table closes in the first three rows and columns. A 
corollary of Theorem (7.2), below, is that this property characterizes the 
Fock representation. 

7. ITO ALGEBRA CHARACTERIZATION OF THE FOCK STATE 

DEFINITION (7.1). We say that a subset ,at, of A( T; 93o (H)) is full if 
the set 

{ILK KUV)~:~EH,Z~T,X ~-WS9Q(H)), 

X, Y are jointly regular and [X, yD exists} 

is dense in H. 

Notice that a spectral measure in JV( T; 33o (H)) is certainly full, 

THEOREM (7.2). For all f E H and all jointly regular self-adjoint 
X, YE JZ( T, S?$,(H)) such that the brackets [X, y4 exist consider the 
following statements (where all equalities are meant to hold on D): 

(i) qe is the Fock state (i.e., Q = l), 

(ii) [Af,, NY1 = A&, rll., 
(iii) [Af,‘, NY] = 0, 

(iv) CNy, Ai1 = 0, 

(VI [NY, &+a =A&, 
(vi) N is a I-, .I]-homomorphism, i.e., 

wx9 w =N[~,~. 
Then (i) implies each of the other statements and, if A( T; BQ(H)) is full, 

then all the statements are equivalent. 
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Proof: The fact that (i) implies the statements (ii), . . . . (v) follows 
immediately from Proposition (5.4) and from the validity, for Q = 1, of the 
identity 

MO B(g,)- ... .m,) W(h)@ 

= -i i B(g,). . . . . &gj) . . . . 'B(gn)(X(z)f, g j> W(h)@ 

j=l 

+ (JfU)f, h) ml). ... .aL) Wh)@> (7.1) 

Now we prove that (i)* (vi). Using Proposition (5.3) and with the 
notations 

z= 1x7 rn; z,+z+z*); z,+z-z*) (7.2) 

this amounts to proving that 

c B(g,)- ... .B(g,,). ... 4(gj*). ... .B(g,) W(j-)@ 
14jlcjzCn 

. C(gj,9 zgj2) + (gj2, zgi,)l 

+ i B(g,). ... . B( gj) . . . . *wL) w-I@ 

j=l 

j=l 

j=l 

-B(g,). ... .m,) wf)WZf,f> 

= -i f: B(g,). . . . .B(iZ,j)- ... *mtJ Wf)Q, 
j=l 

+ i lqg,). ... .B(iZ, j). ... *mJ wt-I@ 
j=l 

+B(g,). ... .Hg,)NiZ,f) WfP+Wgl) 

. ... .B(g,) B(iZ,f) Wf)@ 

-B(g,). ... ~mL) w-P<zf,f>* (7.3) 
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One easily checks that for the Fock representation the following holds for 
allf, gEH and ZeW(H): 

(WZg)+ <Z&f)) wt-)Q, 

= (B(iZg)+iB(Z,g)- (g, Zf> Wf)@- (7.4) 

Furthermore, using the commutation relations of the B and (7.4) we find 

i B(g,). ... .B(iZ,gj). a.. .B(g,) W(f)@ 
j=l 

+ k B(g,). ... . B( iZ, gj) . . . . . Bk) J-W-) @ 
j=l 

= --I ’ c B(g,). ... .fi(gj,). ... d?(gj2) 
l<jlijzCn 

. ... *B(g,) Wf) @PiIm(Z,gj,, gi,)l 
+ C B(g,)* .*. .B(gj,). ... .B(gjz) 

I<jl<j2<n 

. ... *B(g,) f+‘(f) @C2iIm(Z,gj,, gjz)I 

-i i B(g,). ... .&(gj). . . . -4gn) B(iZ, gj) Wf)@ 
j=l 

+ i B(g,). +a. .&gj). . . . *B(gn)B(iZogj) Wf)@ 
j=l 

= -i 1 B(g,). ... .&g,,). e.. .&gj2) 
l<jl-=h<n 

. ... .B(gn) w(f) @C(Zgj,, gj2) + (gj,T Zgj2) 

-2iIm(Zgj,, Zgj2)l + i B(g,) 
j=l 

. . . . . B( gj) . . . . 
*B(gn)B(Zgj) w(f)@ 

-i i B(g,). . . . . B( gj) . . . . .B(gn) Wf) @C<Zg>f) + <g, WI 
j=t 

=,c, B(g,). **- .B(Zgj)* ... *B(g,) Wf)@-i t B(gl) 
j-1 

. . . . . &gj) . . . . .B(gn) w(f) @C<-%f) + (g, Zf>l. (7.5) 

Combining (7.4) and (7.5) we finally get (7.3). Suppose now that 
A(T; 9&(H)) is full. We prove then that (ii) + (i). From Proposition (5.4) 
we know that 
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with Z= [IA’, Yj. Hence by (ii) we have that 

(@, w(n)~)(~/,Zh)=(m,A:rW(h)Q 

= (@, Jw)@)<f, Zh) 

so {(l-Q)/2*S,Zh)=O for allf,hEHand Z=[X, Y’j, thus Q=l. The 
other implications are proven in the same way. 

THEOREM (7.3). Let 9 be as above. Let 9 be a self-adjoint regular Ito 
algebra in .M(T; BQ(H)) and denote by X the linear span in .A?( T; BQ (H)) 
of the measures 

Consider the following statements: 

(i) qn is the Fock state (Q= l), 

(ii) X is an Zto algebra. 

Then (i) implies (ii). Moreover, if Y is full, (i) and (ii) are equivalent. 

ProojI The fact that (i) implies (ii) was already contained in 
Theorem (7.2). Suppose now that 9 is full and that X is an Ito algebra. 
Fix now any f E H and A’, YE 9 such that X* = X and Y* = X Since X 
is an Ito algebra we know that there exist fi, g,, f2, g, E H and 
Z1, Zz, Z3, Z,, Z,ES such that for all ZG T, 

Taking the scalar product of this operator identity between the vectors 
W(h)@ and W(g)@ and using the explicit action of the involved operators 
on these vectors (cf. Theorem (5.7), Proposition (4.1), and Lemma (3.2)) 
we find that for all h, g E H and all ZG T, 

<i(Q+l).L IiX vllU)g)=(f,,Z,U)g,) 

+ (Zs(0.L t(Q+ l)g) 

+ <Z,U)f,, $(l-Q,h) 

+ Ml +Q)h Z,U)f,) 

+ <it1 -Q,g, Z,(Z)f,) 

+ (f(l + QP, Z,(Z)f,) 
+ <it1 -Q)s, Z,UV). 
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Hence letting h = g = 0, we have that, for all ZE T, 

Similarly, letting h = 0 and using the arbitrariness of g, we obtain 

m+uIx Y1l*(z)f=lce+1,z2(z)f*; 

$(1-QP&)f3=0 

and by a similar argument 

f(l-Q)z,(z)f,=~(1+Q)z3(z)f3 
=$(1+Q)Z4(Z)=$(1-Q)ZJZ)=O 

and, since Q 2 1, this implies that 

z,=zq=o; 23 (0 f3 = 0; z1 U) fi = 1x3 YD *m f 

thus we know that for all f E H and all self-adjoint X, YE y, 

BA,f, NYII =A[*,;,.*. 

Since 9 was supposed to be full this implies by Theorem (7.2) that Q = 1. 

8. FERMION ITO ALGEBRAS 

Let H be a complex Hilbert space whose scalar product we shall denote 
( ., .) and let s( ., .) = Re( ., .). The CAR C*-algebra A(H) over (H, s) 
is the unique C*-algebra such that there exists a real linear map 
B:~EH+B(~)EA(H) satisfying 

{B(f ), B(g) > = 2s(f, g) = B(f). B(g) + B(g). B(f) (8.1) 

B(f)*=B(f) (8.2) 

and the set {B(g,), . . . . B(g,);fiEH,j= 1, . . . . II} is dense in A(H). The 
conditions (8.1) and (8.2) imply that each B(f) is a bounded operator with 
norm Ilf II. 

DEFINITION (8.1). A gauge invariant mean zero Gaussian state rp on 
,4(H) with covariance Q is determined by the conditions 

cp@k,). ... .Bk,))=O (8.3) 
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if n is odd, and 

W(f)%d)=Re(f, s>+iIm(f,Qg> (8.4) 

4wg1). ..* .Bkih))= C sgn(j,,...,jn).cp(B(gjl) 
il. . . ..A 

.mjJ). ... . V(B(gjh-,) .B(gjz.)), (8.5) 

where the sum is taken over all (jI, . . . . j,) from 1 to 2n such that 
j, < .h, -., j,,, _ 1 <j,” and j, < j, < . . < jzn- I and Q is a bounded self- 
adjoint operator on H satisfying 

IlQll d 1. @3-6) 

The Fock state is defined by the condition Q = 1 and the anti-Fock state 
by the condition Q = -1. We denote { %‘, rr, @} the GNS triple of cp and 

D=linearspanof{B(g,). ... .B(g,)@:gjceH, j=l,...,n), (8.7) 

where we have omitted the representation R in the notation. For (T, i&9’) as 
in Section 1 define 

gQ(H) = (XEW(H): [X, Q] =O) 

and let A(T; W&H)), A(T; 3(D)) be 9(D))-valued measures on (T, ~8) 
as in the beginning of Section 5 with D defined by (8.7). As usual, for Zc T, 
we shall denote P(Z) the set of all finite partitions (Zr, . . . . Z,) of I. 

Let X, YE .IZ?( T; L?+?~(H)) be such that the brackets [X, yD exist in the 
strong operator topology on H. Then by the uniform boundedness 
principle it follows that for each ZE T the operator [X, YJ(Z) E W(H). 
Moreover, since Q is bounded, 

[[TX y11Uh Ql =O W-8) 

therefore [IX, a E A( T; gQ(H)). 

DEFINITION (8.2). Let rp be a quasi-free state on the CAR C*-algebra 
A(H) with GNS triple (2, R, @}. Let XE&(T;~~~(H)) and let ~EH. 
Define for any Zc T 

and notice that Bfx E &( T, W(X)). We call Bfx the Fermion field measures 
associated with the test function f and the measure X. 
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LEMMA (8.3). If X, YE A( T; a(H)) are regular, then for all I c T and 
f, g,hE H one has 

,,aIjkil KWdfKg, YUdh) =Q (8.10) 

where the limit is meant in the norm topology of A(H). 

Proof: Since for any partition (Ik) E 9(I) we have that 

II f: KW,)f)(g, Y(W) 
k=l 

the result follows directly from the regularity of X and Y. 

PROPOSITION (8.4). Let X, YE &( T; gQ (H)) be jointly regular measures 
and assume that [X*, Y’J exists strongly. Then for every f, g E H, EBf,, B$] 
exists in the strong operator topology on W(2). Moreover 

lIBfx,B$lU)=ReCL lIX*, YDU)g)+iIm(QL IX*, Ul(I)g>. (8.11) 

Proof: Since 

II 
k$l ‘%x(k)f)B(y(I*k)~~ 

d 
( 
kil IIB(x&)f)ll’ 

1 ( 
l”* cl llB(y(Ik) g)l’)“’ 

G M * Ilf II * II gll 

for all (Ik) E S(I) by linearity and continuity it is sufficient to prove strong 
convergence on vectors of the form B(g,) . -. . . B(g,)@. Moreover 

k=l 

k=l 
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Hence, by Lemma (8.3) and repetition of the argument above, it is 
suffkient to prove that 

II 
(8.12) 

where 
c = ReCL lx*, KU(Z) g> + i Im<QL hx*, KU(Z) g>- (8.13) 

But 

@9 i m(zk) f) B( Wk) g)@ 
k=L > 

= i Re(x(zk)f, Y(&)g)+~Im(Q~(~k)f, y(zk)g)+07 

and 
k=l 

p k~~~(~(~,)g)~(~(~~)f)B(Xo/)B(Y(l,)g)) 
(, 

=q jl ~(Y(~,k)B(X(z~)f) ‘q i B(X(zk)f)B(Y(zk)d 
( 1 ( > 

ta) 

k=l 

- i dB( ytz,) g) B(X(zk) f)) ’ dBtXtz,) f) B(Y(zk) g)) (b) 
k,l= 1 

+k;l @(Ytz,)g) B(Y(zk)f))‘cp(B(X(z,)f) B(X(zk)g)). tc) 

Clearly (a) tends to ICI* whereas (b) and (c) tend to zero because of the 
assumed regularity of X and Y. This proves (8.12). 

Let XE go(H) be a self-adjoint operator. Consider the one parameter 
quasi-free automorphism group of A(H) given by 

af(W)) = B(eiexf), BER. (8.14) 

Our assumptions imply that cp is a:-invariant hence, in the GNS represen- 
tation of cp it is implemented by a unitary operator UC, i.e., 

n(af(x)) = @r(x) UT; u,x!D = CD. (8.15) 

PROPOSITION (8.5). The 1 parameter unitary group Uf (0 E R) is strongly 
continuous and its generator N, has D in its domain. Moreover 

NxWQl). ... .RL))@ 

= -i i n(B(g,). . . . .B(iXgj). . . . .B(g,))@. (8.16) 
I= 1 

Proof Straightforward. 
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DEFINITION (8.6). For XEA!(T; BQ(H)) we define the measure 
N,EWT; Wg)) by 

THEOREM (8.7). Let X, YE &( T; W(H)) be jointly regular self-adjoint 
measures. Assume that [X, YJ exists strongly on H. Then the quadratic 
variations 

exist strongly on D. Moreover, if the creation and annihilation operators are 
defined as usual by 

Afx = $ (Bjt - iBj;), A$+ = $(B$ + iB/,) (8.19) 

then we have for self-adjoint X and Y 

INA-, NJ Hg,). -a. .B(g,)@ 

=,pkl)- ..* .B(Lf, rug,)* ..* ~&LP 

+ 1 (-l)‘+kB(gl). **f .B(gj). ... .B(g,). .*. -B(g,)@ 
1Cjcksn 

. CRe<gp [K a gk) + iIm(Qgj, Ix, a gk) 

+Re(rx, &!  gj ,  gk) 4iIm(QIK r] gj ,  gk)] (8.20) 

CJL-@l WI). ... .m,)@ 
= -A{&;,, B(g,). ... .&d@ 
=i i (-l)jB(g,)- “* ‘B(gj)’ .‘. .B(gn)@ 

j=l 

(8.21) 

EN,, A$+II B&l). ... -&L,)@ 

=A-$,n WI). ... -N&J@ 

+i i (-l)jB(g,). ... '&gj). "* 'B(gn) 
1-Q 

j=l 
2gj3 Ix9 ullf 

> 

(8.22) 
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C& NYll ml). ... .mn)@ 

= -i i (-l)jqgl). . . . . B( gJ. . . . . E(g,) 

j=l 

(8.23) 

uf=, NYll ml). ... .m n P 

=i f: (-l)jB(gI). ..+ . B( gj) . . . . 
j=l 

Tf). 

(8.24) 

Proof To prove (8.20) notice that 

1 NAZk) NYUk) %l). .-. Mel)@ 
k 

= -iEN, i B(g,)- "' . B(iY(Z,) gj) * . . . . B(g,)@ 

k j=l 

=c f: ml). .. . ‘B(X(zk) y(zk)gj)’ **’ ‘B(gn)@ 

k j-1 

(i) 

Clearly (i) tends to 

Cm,). ... .4%X, nlmgj). ..* *&L)@. 
k 

Consider now (ii). Because of Lemma (8.3) we can anticommute the factors 
B(iX(z,) gh) and B(I’Y(z,) gi) t0 the right. By PrOpOSitiOn (8.4) we then get 
that (ii) converges to 

- 1 (-l)“-‘-hB(g& ... .&gh). ... -B(gj). ... .B(g,).[B~,B$]@ 
hcj 

=&(-l)j+hB(g& ... A(g,). ... .&gj). .*. .B(g,)+3$+q@ 

=k;j(-l)i+hB(gI). ... .B(gh). ... .b(gj). ... .B(g,) 

-CRe(gj, E-K ~gk)+iIm(Qgj, IX, ngk)]‘@. (8.25) 
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The term (iii) is dealt with in the same way. To prove (8.6) notice that 

~wI,)Af,omJ~ .** .m”P 

=;wk) ~(B(iY(Z,)S)-iB(Y(Z,)f))B(g,). ... *mn)@ 

=;; (I’mvk) wk)f)-~(wk) wk)f))m,)~ --* *WnP 

+~~(B(iY(l,)f)-iB(Y(l,)f)) 
k 

. -i i B(g,). .** 

( 

‘B(X(z,)gj)* *” ‘B(g,)Qi 

) 

. (8.26) 
j=l 

Clearly the first term in the right-hand side of (8.26) tends to 

-$x,;,u)ml)~ ... -W,)@. 

Applying the anticommutation relations, Lemma (8.3), and Proposi- 
tion (8.4), we find that the second term in (8.26) has the same limit as 

+j$l (-l)“-‘B(g,). ... .B(g$ ..* .B(g,) 

*T (B(I’Y(zk)f)-iB(Y(zk)f)) B(I’Y(zk)gj)@ 

and this limit is equal to 

ijtl (-l)‘B(g,). . . . .B(gJ . . . . .B(g,) 

dRe(l[X J’Ilf, gj)+iIm<lX YD.L Qgj) 

-iWBX rll f, gj> Im<bK y4 .L iQgj>l 

For the identity (8.22) we notice that 

~NX(zk)AfZ(zk)B(g,)e ‘** ‘B(&)@ 
k 

+SC(B(iy(zk)j)+iB(Y(zk)f)) 
k 

-i i B(g,). . . . ‘&k-(I,)&)’ ‘.’ ‘B(g,,)@ . 
j=l 

580/85/2-4 
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Clearly the first term in the above sum tends to 

~~,y#)Ng,b ..* .m”)@ 

and as in the previous case we find that the second term tends to 

;,i (-l)‘B(g,). ... .B(gj). ... .qg,).[(ygj,[x, YJf>]. 
J=l 

Finally, for the identities (8.23) and (8.24) we have 

which converges to 

and 

C4vk)WZk)~k,)~ ... .Bk,)@ 
k 

= ;; (B(I’X(zk) f) + iBtx(zk) f)) B(g,) 

which converges to 

THEOREM (8.8). For all f in H and all jointly regular self-aa’joint 
X, YE A!( T; BQ (H)) such that I[X, a exists consider the following 
statements (where all the equalities hold on D): 

cp is the Fock state (8.27) 

Q=l (8.28) 

II& NYn = A&, r]l (8.29) 
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[A&N,]=0 (8.30) 

[NJ{] = 0 (8.31) 

[N&q = Af+ n-K rll (8.32) 

BN*9 Nrll = N[X, Yj 5 (8.33) 

i.e., N is a [ ., .a-homomorphism. 
Then (i) implies all the other statements. If A( T; BQ (H)) is full then all 

statements are equivalent. 

ProoJ: The fact that (i) implies (ii), . . . . (vi) follows immediately from 
Theorem (8.7) and the validity, for Q = 1 of the identity 

4vPkl)~ ... .&LIP 

=i i (-l)jB(g,). ... ‘B(gn)o’ Cxtz)f, gj>. 
j=l 

Now we prove that (i) * (iv). Using Proposition (8.5) and the notation 

z= IX, Ku; zs=; (Z+Z*); z,=$z-Z’) 
we have that 

Nz-Bk,). ... .&sJ@ 

=cl (-lO(g1). ... .[B(iZ,gj)-iB(iZ,g,)]e ... .B(g,)@. (8.34) 

Using the anticommutation relation, the left-hand side of (8.30) can be 
rewritten as 

.C2iIm(Z,gj, g,)--2Re(iZ,gp gk)l 

+ i (-l)“-‘B(g,). ... .&gj). . . . . CNiZ, gj) 
j=l 

-iB(iZ,gj)] . ... . B( g,) . [ B( iZ, gj) - iB( iZ, gj)] @. (8.35) 

But since Q = 1 we have that A(h)@ = 0 for all h and using this it is easily 
checked that 

[B( iZ, gi) - iB( iZ, gj) ] @ = B( Zgj) @. 
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Now, again using the anticommutation relations, the second term of (8.3 1) 
can be rewritten as 

. ... -B(g,)cD.2 Re(Zgj, gk) 

+ 1 II( .-. *B(Zgj). ... -B(g,)@. 
l<jin 

After substituting this in (8.3 1 ), we find that 

= 1 B(gl). ... .B(Zgj)- ... -B(g,)@ 
l<j<n 

and comparing this with [N,, NY] . B(g,) e . .. . B(g,)@ for Q = 1 as com- 
puted in Theorem (8.7) we find that 

Conversely, assume that A(T; .%o(H)) is full. We prove then that 
(vi) * (ii). The other implications are dealt with in the same way. Suppose 
that IIN,, NY11 = NiIx, n for all self-adjoint regular X and Y in 
A( T, go(H)) whose brackets exist. Taking matrix elements of this 
operator identity between any vectors of the form B(f)@ and B(g)@ we 
find, using Theorem (8.7) and Proposition (8.5), that for allf, gE H, 

(.fiZ,g)=<f,QZ,g), 

where Z, is defined as above. Since A( T, 99o (H)) is supposed to be full, it 
follows that Q = 1. 

Theorem (7.3) can also be reformulated for the Fermi case. Hence also 
in this case we have the characterization of the Fock state in terms of Ito 
algebras. If Q # 1, then the measures 

are new objects, i.e., they are measures which cannot be expressed as linear 
combinations of the scalar and the Fermi field measures. However, 
the same result as for Boson holds (cf. Theorem (6.3)), i.e., if 
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~L#q7yQ(H)) is an associative Ito-commutative Ito algebra then the 
linear span X of the measures 

N* X9 AC#; IIA$? NJ; CNx, Nell; (f, W.)g) 

with f, g E H and X, YE 9 is an associative Ito algebra whose algebraic 
structure is completely determined by exactly the same relations as those 
listed in Theorem (6.3). 
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