Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function.

Bernardoni, P., Fazi, B., Costanzi, A., Nardacci, R., Montagna, C., Filomeni, G., et al. (2013). Reticulon1-C modulates protein disulphide isomerase function. CELL DEATH & DISEASE, 4, e581 [10.1038/cddis.2013.113].

Reticulon1-C modulates protein disulphide isomerase function

Filomeni, G;CIRIOLO, MARIA ROSA;PIACENTINI, MAURO;DI SANO, FEDERICA
2013-01-01

Abstract

Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Microtubules; Protein Disulfide-Isomerases; Endoplasmic Reticulum; Humans; Endoplasmic Reticulum Stress; Cell Line, Tumor; Nerve Tissue Proteins; Protein Isoforms; Protein Folding; Gene Expression Regulation; Transport Vesicles; Mutation; Signal Transduction
Bernardoni, P., Fazi, B., Costanzi, A., Nardacci, R., Montagna, C., Filomeni, G., et al. (2013). Reticulon1-C modulates protein disulphide isomerase function. CELL DEATH & DISEASE, 4, e581 [10.1038/cddis.2013.113].
Bernardoni, P; Fazi, B; Costanzi, A; Nardacci, R; Montagna, C; Filomeni, G; Ciriolo, Mr; Piacentini, M; DI SANO, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cell death and disease.pdf

accesso aperto

Licenza: Non specificato
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/77538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact