The novel instruments of the COSMO-SkyMed (CSK) Earth Observation programme, offer an opportunity to explore at various resolutions the information content of X-band signal backscattered with different polarizations. In spite of their potential to render additional information about an area of interest, speckle noise and artifacts make X-band acquisitions difficult to interpret. This is a motivating scenario to explore what (semi-)automatic procedures might be able to offer. This paper is first attempt to process CSK Stripmap PingPong data using two well-known artificial neural network techniques: the supervised backpropagation multilayer perceptron and the unsupervised self-organizing map.

Penalver, M., Pratola, C., Fabrini, I., DEL FRATE, F., Schiavon, G., Solimini, D. (2012). Classification of PingPong COSMO-SkyMed imagery using supervised and unsupervised neural network algorithms. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International (pp.5888-5891) [10.1109/IGARSS.2012.6352269].

Classification of PingPong COSMO-SkyMed imagery using supervised and unsupervised neural network algorithms

DEL FRATE, FABIO;SCHIAVON, GIOVANNI;SOLIMINI, DOMENICO
2012-01-01

Abstract

The novel instruments of the COSMO-SkyMed (CSK) Earth Observation programme, offer an opportunity to explore at various resolutions the information content of X-band signal backscattered with different polarizations. In spite of their potential to render additional information about an area of interest, speckle noise and artifacts make X-band acquisitions difficult to interpret. This is a motivating scenario to explore what (semi-)automatic procedures might be able to offer. This paper is first attempt to process CSK Stripmap PingPong data using two well-known artificial neural network techniques: the supervised backpropagation multilayer perceptron and the unsupervised self-organizing map.
International Geoscience and Remote Sensing Symposium
Munich, Germany
2012
Rilevanza internazionale
contributo
lug-2012
2012
Settore ING-INF/02 - CAMPI ELETTROMAGNETICI
English
Intervento a convegno
Penalver, M., Pratola, C., Fabrini, I., DEL FRATE, F., Schiavon, G., Solimini, D. (2012). Classification of PingPong COSMO-SkyMed imagery using supervised and unsupervised neural network algorithms. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International (pp.5888-5891) [10.1109/IGARSS.2012.6352269].
Penalver, M; Pratola, C; Fabrini, I; DEL FRATE, F; Schiavon, G; Solimini, D
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/75718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact