It is known that any quantization of a quasitriangular Lie bialgebra g gives rise to a braiding on the dual Poisson-Lie formal group G*. We show that this braiding always coincides with the Weinstein-Xu braiding. We show that this braiding is the “time one automorphism” of a Hamiltonian vector field, corresponding to a certain formal function on G* × G*, the “lift of r”, which can be expressed in terms of r by universal formulas. The lift of r coincides with the classical limit of the rescaled logarithm of any R-matrix quantizing it.
Enriquez, B., Gavarini, F., Halbout, G. (2003). Uniqueness of braidings of quasitriangular Lie bialgebras and lifts of classical r-matrices. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 46, 2461-2486 [10.1155/S1073792803208138].
Uniqueness of braidings of quasitriangular Lie bialgebras and lifts of classical r-matrices
GAVARINI, FABIO;
2003-08-24
Abstract
It is known that any quantization of a quasitriangular Lie bialgebra g gives rise to a braiding on the dual Poisson-Lie formal group G*. We show that this braiding always coincides with the Weinstein-Xu braiding. We show that this braiding is the “time one automorphism” of a Hamiltonian vector field, corresponding to a certain formal function on G* × G*, the “lift of r”, which can be expressed in terms of r by universal formulas. The lift of r coincides with the classical limit of the rescaled logarithm of any R-matrix quantizing it.File | Dimensione | Formato | |
---|---|---|---|
braidings-BFG-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
170.95 kB
Formato
Adobe PDF
|
170.95 kB | Adobe PDF | Visualizza/Apri |
Uniqueness_STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Editor's (Oxford University Press) printed version - Authors' own offprint copy
Licenza:
Copyright dell'editore
Dimensione
266.8 kB
Formato
Adobe PDF
|
266.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
266.76 kB
Formato
Adobe PDF
|
266.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
150.03 kB
Formato
Adobe PDF
|
150.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.