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Abstract

It is known that any quantization of a quasitriangular Lie bialgebra g
gives rise to a braiding on the dual Poisson-Lie formal group G∗. We show
that this braiding always coincides with the Weinstein-Xu braiding. We
show that this braiding is the “time one automorphism” of a Hamiltonian
vector field, corresponding to a certain formal function on G∗ × G∗, the
“lift of r”, which can be expressed in terms of r by universal formulas. The
lift of r coincides with the classical limit of the rescaled logarithm of any
R-matrix quantizing it.
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§ 0 Outline of results

- a - Quasitriangular Lie algebras

We fix a base field K of characteristic zero. Let (g, r) be a finite dimen-
sional quasitriangular Lie bialgebra. Recall that this means that

• (g, [−,−], δ) is a Lie bialgebra;

• r ∈ g⊗g is a solution of the classical Yang-Baxter equation (CYBE),
i.e.,

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0;

• we have δ(x) = [r, x⊗1+1⊗x] for any x ∈ g, so in particular, r+r2,1

is g-invariant.

- b - Quant(g)

A quantization of (g, r) is a quantized universal enveloping (QUE)
algebra (U~(g),m,∆) quantizing (g, [−,−], δ), together with an element

R ∈ U~(g)
⊗̂2, such that if x 7→ (xmod ~) is the canonical projection

U~(g)
⊗̂2 → U(g)⊗̂2 then

• ∆op = R∆R−1,

• (∆⊗ id)(R) = R1,3R2,3, (id⊗∆)(R) = R1,3R1,2,

• (ϵ ⊗ id)(R) = (id⊗ϵ)(R) = 1 where ϵ : U~(g) → K[[~]] is the counit
of U~(g),

• (Rmod ~) = 1,
(
R−1
~ mod ~

)
= r ∈ g⊗ g ⊂ U(g)⊗ U(g).

We denote by Quant(g) the set of all quantizations of (g, r). According to
[EK], we have a map Assoc(K)→ Quant(g) (where Assoc(K) is the set of
all Lie associators defined over K), so Quant(g) is nonempty.

- c - Braid(g)

Let G∗ be the formal group corresponding to the dual Lie bialgebra g∗,
and let OG∗ be its function ring; so OG∗ = (U(g∗))∗; this is a formal series
Hopf algebra, equiped with coproduct ∆O : OG∗ → OG∗⊗̄OG∗ (⊗̄ is the
tensor product of the formal series algebras, OG∗⊗̄OG∗ = OG∗×G∗ is the
function ring of G∗ ×G∗) and counit ϵO : OG∗ → K.

Definition 0.1. A braiding of G∗ is a Poisson algebra automorphism R
of OG∗⊗̄OG∗ satisfying the conditions:

(α) (ϵO ⊗ id) ◦ R = ϵO ⊗ id, (id⊗ϵO) ◦ R = id⊗ϵO,
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(β) ∆op
O = R ◦∆O,

(γ) R1,3 ◦ R2,3 ◦ (∆O ⊗ id) = (∆O ⊗ id) ◦ R,
R1,3 ◦ R1,2 ◦ (id⊗∆O) = (id⊗∆O) ◦ R,

(δ) if mG∗×G∗ is the maximal ideal of OG∗⊗̄OG∗, then

• the automorphism mG∗×G∗/m2
G∗×G∗ → mG∗×G∗/m2

G∗×G∗ induced
by R is the identity,

• therefore R−id induces a linear map [R−id] : mG∗×G∗/m2
G∗×G∗

→ m2
G∗×G∗/m3

G∗×G∗ , and if we use the natural identifications

mG∗×G∗/m2
G∗×G∗

∼−→ g⊕ g

m2
G∗×G∗/m3

G∗×G∗
∼−→
(
S2(g)

)
⊕ (g⊗ g)⊕

(
S2(g)

)
,

then [R− id] coincides with the map

(x, y) 7→ (0, [r, x⊗ 1 + 1⊗ y], 0).

We denote by Braid(g) the set of all braidings of G∗.

- d - The Weinstein-Xu braiding

Define R̃WX : G∗ ×G∗ → G∗ ×G∗ by

R̃WX(u, v) = (λR−(v)(u), ρR+(u)(v)), (0.1)

where R± : G∗ → G are the formal group morphisms exponentiating
the Lie algebra morphisms r± : g∗ → g, where r+(ξ) = ⟨r, ξ ⊗ id⟩ and
r−(ξ) = −⟨r, id⊗ξ⟩, and λ, ρ are the left and right dressing actions of G
on G∗ (regular action on G∗ = D/G and on G∗ = D\G, where D is the
double group of G).

Let RWX ∈ Aut(OG∗⊗̄OG∗) be the algebra automorphism induced be
R̃WX. Then

RWX ∈ Braid(g) (see [WX] and [GH2]).

- e - The Gavarini-Halbout map

If (U~(g)(g),m,∆, R) is a quantization of (g, r), defineO~ as a quantized
function algebra associated to U~(g). So

O~ = {f ∈ U~(g)| ∀n ≥ 0, δ(n)(f) ∈ ~nU~(g)
⊗̂n};

where δ(n) : U~(g)→ U~(g)
⊗̂n is defined by δ(n) = (id−η◦ϵ)⊗n◦∆(n). Then

O~ is a topological Hopf subalgebra of U~(g), and it is a quantization of the
Hopf-Poisson algebra OG∗ (see [Dr,Ga]). In particular, O~/~O~ ≃ OG∗ .
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Theorem 0.2. (see [GH] and also [EH]) The inner automorphism Ad(R) :

x 7→ RxR−1 of U~(g)
⊗̂2 restricts to an automorphism R~ of O⊗̄2~ . The

reduction R of R~ modulo ~ is an outer automorphism of OG∗⊗̄OG∗, and
R ∈ Braid(g).

The main part of this result was proved in [GH] (see also [EH]). The
remaining part is a consequence of Proposition 0.7. Therefore we have a
map:

GH : Quant(g)→ Braid(g).

- f - Unicity of braidings

Theorem 0.3. Braid(g) contains only one element, so

Braid(g) = {RWX}.

In particular, the braiding R constructed in Theorem 0.2 coincides with
RWX.

- g - Formal Poisson manifolds

Let A be an arbitrary Poisson formal series algebra; let us denote by
mA the maximal ideal of A, and let us assume that {A,A} ⊂ mA. Then we
have {mk

A,m
l
A} ⊂ mk+l−1

A , for any k, l ≥ 0. For f, g ∈ m2
A, the Campbell-

Baker-Hausdorff (CBH) series

f ⋆ g = f + g +
1

2
{f, g}+ · · ·+Bk(f, g) + · · ·

converges in A with respect to the mA-adic topology.

There is a unique Lie algebra morphism

V : A→ Der(A)

f 7→ (Vf : g 7→ {f, g}).

Define Der+(A) as the Lie subalgebra of Der(A) of all derivations taking
each mk

A to mk+1
A . Then V restricts to a Lie algebra morphism m2

A →
Der+(A). Moreover, for any derivation D ∈ Der+(A), the series exp(D) is
a well defined automorphism of A; this defines an exponential map

exp : Der+(A)→ Aut(A)

D 7→ exp(D).
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The series exp(D) is a well-defined automorphism of A. Let us denote
by Aut+(A) the subgroup of Aut(A) of all Poisson automorphisms θ such
that the map [θ] : mA/m

2
A → mA/m

2
A induced by θ is the identity (i.e.,

Aut+(A) is the subgroup of Aut(A) of all Poisson automorphisms which
are tangent to the identity). Then exp(D) belongs to Aut+(A), and the
map exp : Der+(A)→ Aut+(A) is a bijection.

- h - Lifts of the classical r-matrix

Using the previous section for the formal Poisson manifold OG∗ , we can
define lifts of the classical r-matrix r of the quasitriangular Lie bialgebra g:

Definition 0.4. A lift of r is an element ρ ∈ OG∗⊗̄OG∗, such that:

(α) (ϵ⊗ id)(ρ) = (id⊗ϵ)(ρ) = 0,

(β) ∆op = Ad(exp(Vρ)) ◦∆ (equality of automorphisms of OG∗×G∗),

(γ) (∆ ⊗ id)(ρ) = ρ1,3 ⋆ ρ2,3, (id⊗∆)(ρ) = ρ1,3 ⋆ ρ1,2, where ρi,j is the

image of ρ by the map (OG∗)⊗̄2 → (OG∗)⊗̄3 associated with (i, j),

(δ) the class [ρ] of ρ in
(
mG∗/m2

G∗
)⊗2

= g⊗ g satisfies

[ρ] = r.

Remark: Condition (β) may be rewritten as follows:

∀f ∈ OG∗ , ∆op(f) = ρ ⋆∆(f) ⋆ (−ρ).

It will follow from the proof of Theorem 0.8 that this condition may be
dropped from the definition of Lift(g) (see Lemma 3.2). We denote by
Lift(g) the set of all lifts of r.

- i - Sequence of maps Quant(g)→Lift(g)→Braid(g)

Let us recall an ~-adic valuation result for R-matrices:

Theorem 0.5. ([EH]) If (U~(g),m,∆, R) is a quantization of (g, r), and
if we set ρ~ = ~ log(R), then ρ~ ∈ O⊗̄2~ . If m~ is the kernel of the counit

map O~ → K[[~]], we even have ρ~ ∈ m⊗̄2~ .

Corollary 0.6. The reduction ρ of ρ~ modulo ~ belongs to Lift(g). So
the assignment (U~(g),m,∆, R) 7→ (ρ~mod ~) defines a map Quant(g) →
Lift(g).

Proposition 0.7. There is a unique map Lift(g)→ Braid(g), taking ρ to
exp(Vρ). Then the composed map Quant(g)→ Lift(g)→ Braid(g) coincides
with GH : Quant(g)→ Braid(g).
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- j - Unicity of lifts

Theorem 0.8. Lift(g) consists of only one element.

The unicity part of this theorem uses an elementary argument. The exis-
tence part uses the nonemptiness of Quant(g), so it relies on the theory of
associators and transcendental arguments. In the last part of the paper,
we outline an algebraic proof of the existence part of Theorem 0.8, relying
on co-Hochschild cohomology arguments.

- k - Universal versions

If a is a finite dimensional Lie bialgebra and g is the double of a (so
g = a⊕ b, b = a∗), then we have the algebra isomorphisms

OG∗ ≃ Ŝ·(g) ≃ Ŝ·(a)⊗̄Ŝ·(b)

where Ŝ· is the graded completion of the symmetric algebra. The last
isomorphism is dual to the composed map

S·(b)⊗ S·(a) Sym⊗Sym−→ U(a)⊗ U(b)
m−→U(g)

where Sym is the symmetrization map and m is the multiplication map.

Therefore O⊗̄nG∗ ≃ Ŝ·(a)⊗̄n⊗̄Ŝ·(b)⊗̄n. Now if F and G are any Schur
functors, one can define a universal version of the space F (a) ⊗ G(b),
namely (F (a)⊗ G(b))univ = LBA(G,F ), where LBA is the prop of Lie

bialgebras (see, e.g., [EE]). We then define Hopf algebras
(
O⊗̄nG∗

)
univ

=(
Ŝ·(a)⊗̄n⊗̄Ŝ·(b)⊗̄n

)
univ

, together with insertion-coproduct morphisms re-

lating them.

Definition 0.9. A universal lift is an element ρuniv ∈
(
O⊗̄2G∗

)
univ

, satisfy-

ing the universal versions of the conditions of Definition 0.4 (with r being
the canonical element of g = a⊕ a∗).

We denote by Liftuniv the set of all universal lifts.

When g is any finite-dimensional quasitriangular Lie bialgebra, we have

algebra morphisms
(
O⊗̄nG∗

)
univ
→ O⊗̄nG∗ . It follows that for any g, we have

a map Liftuniv → Lift(g).

Theorem 0.10. Liftuniv consists of only one element ρuniv.
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So the unique lift ρg of a quasitriangular Lie bialgebra g is obtained from
the element

r ∈ g⊗ g ⊂ Ŝ·(g)⊗̄Ŝ·(g) = O⊗̄2G∗

by universal formulas. In [Re], Reshetikin computed ρg when g = sl2 .
His formulas involve the dilogarithm function. We do not know an explicit
formula for ρuniv. It might be simpler to express the pairing ⟨−,−⟩ :
U(g∗)⊗2 → K, defined by ⟨x, y⟩ = ⟨ρg, x ⊗ y⟩; this way one avoids the
unnatural use of symmetrization maps.

- l - Plan of the paper

In Section 1, we construct a map Quant(g) → Lift(g) (Corollary 0.6) and
prove the unicity of lifts (Theorem 0.8).

In Section 2, we construct the map Quant(g)→ Braid(g) (Proposition 0.7),
and then prove the unicity of braidings (Theorem 0.3). The proof of this
theorem uses only a part of the arguments of Section 1 (essentially only
the existence of a sequence of maps Quant(g)→ Lift(g)→ Braid(g)).

In Section 3, we outline a proof of Theorem 0.8 not depending on the theory
of associators.

In Section 4, we sketch a proof of Theorem 0.10.

In Section 5 (appendix), we construct a commutative diagram related to
the duality theory of quantized universal enveloping algebras, which we use
in the Sections 1 and 2.

§ 1 Lifts of classical r-matrices

Proposition 1.1. There exists a map Quant(g)→ Lift(g).

Proof. Let (U~(g),m,∆~) be an element of Quant(g). Let O~ ⊂ U~(g)
be the quantized formal series Hopf (QFSH) subalgebra sitting in U~(g)
(see §0.e). Let m~ be the augmentation ideal of O~; then m~ ⊂ ~U~(g).
In [EH], we showed that there exists a unique ρ~ ∈ m⊗̄2~ such that R =

exp
(ρ~

~
)
(this exponential is well-defined because

(ρ~
~
)
∈ ~U~(g)

⊗̂2). Then
the quasitriangular identities of R can be translated as follows: for a, b ∈
O⊗̄3~ , we set {a, b}~ = 1

~ [a, b]. Let m
(3)
~ be the augmentation ideal of O⊗̄3~ :

then
{m(3)

~ ,m
(3)
~ }~ ⊂ m

(3)
~ ,

therefore

{(
m

(3)
~

)k
,
(
m

(3)
~

)l}
~
⊂
(
m

(3)
~

)k+l−1
. Now if a, b ∈

(
m

(3)
~

)2
, the

series

a ⋆~ b = a+ b+
1

2
{a, b}~ + · · ·
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(CBH series, where the Lie bracket is {−,−}~) is convergent in O⊗̄3~ . Then
we have :

(∆~ ⊗ id)(ρ~) = ρ1,3~ ⋆~ ρ
2,3
~ , (id⊗∆~)(ρ~) = ρ1,3~ ⋆~ ρ

1,2
~ . (1.2)

∆~ restricts to a map O~ → O⊗̄2~ , the reduction of which modulo ~ is
the coproduct map ∆ of OG∗ . Define ρ as the reduction modulo ~ of ρ~, so
ρ ∈ m⊗̄2G∗ . Taking the reduction of (1.2) modulo ~, we get (γ) of Definition
0.4.

On the other hand, we have ∆op
~ = Ad

(
exp
(ρ~

~
))
◦∆. Set ad~(a)(b) =

{a, b}~. The automorphisms Ad
(
exp
(ρ~

~
))

and exp(ad~(ρ~)) coincide. So
we get the identity :

∆op
~ = exp(ad~(ρ~)) ◦∆~ (1.3)

(equality of two morphisms O~ → O⊗̄2~ ). Taking the reduction of (1.3)
modulo ~, we get (β) of Definition 0.4.

To show that ρ satisfies (δ) of Definition 0.4, we use the following result
(which will be proved in Section 4) :

Lemma 1.2. Let σ be an arbitrary element of m~⊗̄m~ and [σ] be its class in(
m~

/(
~m~ + m2

~
))⊗̄2

. Since m~

/(
~m~ +m2

~
)
identifies with g, [σ] ∈ g⊗2.

Since m~ ⊂ ~U~(g), σ is an element of ~2U~(g)
⊗̂2. Then

(
σ
~2 mod ~

)
is an

element of U(g)⊗2. We have the following identity in U(g)⊗2 :( σ
~2

mod ~
)
= [σ].

Since m~ ⊂ ~U~(g), we have ρ~
~ ∈ ~U~(g)

⊗̂2, so in the right-hand-side of
the identity

R− 1

~
=

ρ

~2
+

1

2~

(ρ
~

)2
+

1

6~

(ρ
~

)3
+ · · ·

the terms 1
2~
(ρ
~
)2
, 1
6~
(ρ
~
)3
, . . . , all belong to ~U~(g)

⊗̂2, hence(
R− 1

~
mod ~

)
=
( ρ
~2

mod ~
)
. (1.4)

Now

[ρ] =
( ρ
~2

mod ~
)

(by Lemma 1.2)

=

(
R− 1

~
mod ~

)
(by identity (1.4))

= r (by hypothesis on R).
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Therefore ρ satisfies property (δ) of Definition 0.4.

Now we have proved that the reduction ρ of ρ~ modulo ~ satisfies all the
conditions of Definition 0.4.

Proposition 1.3. Lift(g) contains at most one element.

Proof. Let us denote by mG∗×G∗ the maximal ideal of OG∗×G∗ , so mG∗×G∗

= mG∗⊗̄OG∗ +OG∗⊗̄mG∗. Then we have for any N ≥ 0,

m⊗̄2G∗ ∩mN
G∗×G∗ =

∑
a,b≥1
a+b=N

ma
G∗⊗̄mb

G∗ .

Let ρ and ρ′ be two lifts or r. The classes of ρ and ρ′ are the same in
m⊗̄2G∗

/(
m⊗̄2G∗ ∩m2

G∗×G∗
)
and equal to r, by assumption.

Let N be an integer ≥ 2; assume that we have proved that ρ and ρ′

are equal modulo m⊗̄2G∗ ∩mN
G∗×G∗ . Let us show that they are equal modulo

m⊗̄2G∗ ∩mN+1
G∗×G∗ . Write ρ′ = ρ+ σ; then σ ∈ m⊗̄2G∗ ∩mN

G∗×G∗ . We get

(∆⊗ id) (σ) =(ρ+ σ)1,3 ⋆ (ρ+ σ)2,3 − ρ1,3 ⋆ ρ2,3

=σ1,3 + σ2,3

+
∑
k>1

(
Bk

(
ρ1,3 + σ1,3, ρ2,3 + σ2,3

)
−Bk

(
ρ1,3, ρ2,3

))
,
(1.5)

where Bk is the total degree k homogeneous Lie polynomial of the CBH
series.

Lemma 1.4. If k > 1, Bk

(
ρ1,3 + σ1,3, ρ2,3 + σ2,3

)
− Bk

(
ρ1,3, ρ2,3

)
is an

element of mN+1
G∗×G∗.

Proof. This difference may be expressed as a sum of terms of the form

Pk

(
σi1,3, . . . , σil,3, ρil+1,3, . . . , ρik,3

)
,

where Pk is a Lie polynomial, homogeneous of degree 1 in each variable

i1, . . . , ik ∈ {1, 2}, and l ≥ 1. This expression belongs to m
l(N−2)+k+1
G∗×G∗ . So

it belongs to mN+k−1
G∗×G∗ ⊂ mN+1

G∗×G∗ .

Now OG∗ is equipped with a decreasing Hopf filtration OG∗ ⊃ mG∗ ⊃
m2

G∗ ⊃ · · · : we have

∆
(
mk

G∗

)
⊂

∑
α,β|α+β=k

mα
G∗⊗̄mβ

G∗ .

Its associated graded is therefore also a Hopf algebra; it is isomorphic to the
formal completion Ŝ·(g) of the commutative and cocommutative symmetric
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algebra S·(g), the coproduct of which is defined by the condition that the
elements of degree 1 are primitive. The tensor square O⊗̄2G∗ is also filtered:
the i-th term of the decreasing filtration is

Fili
(
O⊗̄2G∗

)
=

∑
α,β|α+β=i

mα
G∗⊗̄mβ

G∗ ;

and we have
gr
(
O⊗̄2G∗

)
= Ŝ·(g)⊗̄Ŝ·(g).

Moreover, let [σ] be the class of σ in grN
(
O⊗̄2G∗

)
; according to identity (1.5)

and Lemma 1.4, we have

(∆⊗ id) ([σ]) = [σ]1,3 + [σ]2,3, (id⊗∆) ([σ]) = [σ]1,3 + [σ]1,2.

The first identity implies that [σ] ∈ g⊗SN−1(g), the second identity implies
that [σ] ∈ SN−1(g) ⊗ g; since

(
g⊗ SN−1(g)

)
∩
(
SN−1(g)⊗ g

)
= {0}, we

get [σ] = 0, therefore σ ∈ mN+1
G∗×G∗ . So σ belongs to the intersection of all

mN
G∗×G∗ , N ≥ 0, thus σ = 0. This proves that ρ = ρ′.

Corollary 1.5. If (g, r) is a quasitriangular Lie bialgebra, there exists a
unique element ρ ∈ Lift(g).

Proof. The unicity follows from Proposition 1.3, and the existence follows
from Proposition 1.1, and from the fact that Quant(g) is nonempty: in
[EK], Etingof and Kazhdan constructed a map Assoc(K) → Quant(g),
where Assoc(K) is the set of associators over the ground field K; this set
is introduced by Drinfeld in [Dr], where it is also shown that Assoc(K) is
nonempty.

Remark 1.6. Corollary 1.5 relies on the existence of associators, so it
actually relies on transcendental arguments. Another proof of this Corol-
larary will be given in Section 3; this proof is algebraic and is based on the
further use of co-Hochschild cohomology groups.

§ 2 Quasitriangular braidings

In this section, we construct the map Quant(g)→ Braid(g) (Subsection
2.a). We then prove that RWX ∈ Braid(g) (Subsection 2.b). In Subsection
2.c, we prove that Braid(g) contains at most one element. So the image of
any element of Quant(g) in Braid(g) coincides with RWX (Theorem 0.3).
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- a - The map Quant(g)→ Braid(g) (proof of Proposition 0.7)

Let us prove the map ρ 7→ exp(Vρ) actually maps Lift(g) → Braid(g).
If ρ ∈ Lift(g), the fact that ρ satisfies axioms (α), (β) and (γ) of Definition
0.4 respectively implies that exp(Vρ) satisies axioms (α), (β) and (γ) of
Definition 0.1. Let us now prove that the fact that ρ satisfies axiom (δ) of
Definition 0.4 implies that exp(Vρ) satisfies axiom (δ) of Definition 0.1.

By definition, ρ is an element of mG∗⊗̄mG∗ . We have mG∗⊗̄mG∗ ⊂
OG∗⊗̄OG∗ = OG∗×G∗ ; actually, we have mG∗⊗̄mG∗ ⊂ m2

G∗×G∗ , so ρ ∈
m2

G∗×G∗ . Since we have {m2
G∗×G∗ ,mG∗×G∗} ⊂ m2

G∗×G∗ , the map

Vρ : mG∗×G∗/m2
G∗×G∗ → mG∗×G∗/m2

G∗×G∗

induces the zero map. Therefore, so do all the (Vρ)
k, k ≥ 1. So exp(Vρ)

induces the identity map of mG∗×G∗/m2
G∗×G∗ . Let us now compute the

map
[exp(Vρ)− id] : mG∗×G∗/m2

G∗×G∗ → m2
G∗×G∗/m3

G∗×G∗

using the identifications m2
G∗×G∗/m3

G∗×G∗ = S2(g) ⊕ (g ⊗ g) ⊕ S2(g) and
mG∗×G∗/m2

G∗×G∗ = g⊕ g. We have

(ϵ⊗ id) ◦ (exp(Vρ)− id) = (id⊗ϵ) ◦ (exp(Vρ)− id) = 0

(identity of maps OG∗×G∗ → OG∗), because {mG∗ ,OG∗} ⊂ mG∗ . The class
of Ker(ϵ ⊗ id) ∩ Ker(id⊗ϵ) ∩ m2

G∗×G∗ in m2
G∗×G∗/m3

G∗×G∗ is the subspace
(g⊗ g) ⊂ S2(g)⊕ (g⊗ g)⊕ S2(g).

On the other hand, if f ∈ mG∗×G∗ , and k ≥ 2, then (Vρ)
k (f) ∈ m3

G∗×G∗ .
So the class of (exp(Vρ)− id) (f) in m2

G∗×G∗/m3
G∗×G∗ coincides with that

of Vρ(f). So we now compute the map

[Vρ] : g⊕ g→ (g⊗ g).

Let x1, x2 ∈ g and let f1, f2 ∈ mG∗ be such that their classes in mG∗/m2
G∗ =

g are x1, x2. Let us set f = f1 ⊗ 1 + 1⊗ f2, and let us compute Vρ(f). Set
ρ =

∑
α ρ
′
α ⊗ ρ′′α, with ρ′α, ρ′′α ∈ mG∗ . Then

Vρ(f) =
∑
α

{ρ′α, f1} ⊗ ρ′′α + ρ′α ⊗ {ρ′′α, f2}.

Now we have a commutative diagram

mG∗ ⊗mG∗
Poisson bracket−−−−−−−−−−−−→ mG∗

↓ ↓

g⊗ g
Lie bracket−−−−−−−−−−−−→ g

11



where the vertical arrows correspond to the projection mG∗ → mG∗/m2
G∗ =

g. So the class of Vρ(f) in g⊗ g is [r, x1⊗ 1+1⊗x2]. Therefore [exp(Vρ)−
id] : g⊕ g→ (g⊗ g) is the map

(x1, x2) 7→ (0, [r, x1 ⊗ 1 + 1⊗ x2], 0) ,

which proves that exp(Vρ) satisfies condition (δ) of Definition 0.1 and so
belongs to Braid(g).

- b - Proof of RWX ∈ Braid(g)

In [WX], it is proved that RWX satisfies conditions (α), (β) and (γ)
of Definition 0.1. In [GH2], it is proved that it satisfies the first part of
(δ) of this definition, namely RWX induces the identity endomorphism of
mG∗×G∗

/
m2

G∗×G∗ . Then RWX − id induces a map mG∗×G∗
/
m2

G∗×G∗ →
m2

G∗×G∗
/
m3

G∗×G∗ , which we now compute.

Identify G∗ with g∗ using the exponential map. We get, from (0.1), the
expansion at second order of the map R̃WX :

g∗ ⊕ g∗ → g∗ ⊕ g∗

(ξ, η) 7→ (ξ, η) + (ad∗(r+(η))(ξ), ad
∗(r−(ξ))(η)) .

View (x, y) ∈ g⊕g as a function of g∗⊕g∗, taking (ξ, η) to ⟨ξ, x⟩+⟨η, y⟩.
Then RWX(x, y) takes (ξ, η) to

⟨ξ + ad∗(r+(η))(ξ), x⟩+ ⟨η + ad∗(r−(ξ))(η), y⟩
=⟨ξ, x⟩+ ⟨η, y⟩+ ⟨ξ, [r+(η), x]⟩+ ⟨η, [r−(ξ), y]⟩

=⟨ξ, x⟩+ ⟨η, y⟩+
∑
i

⟨ai, ξ⟩⟨η, [bi, y]⟩+
∑
i

⟨bi, η⟩⟨ξ, [ai, x]⟩

=⟨ξ, x⟩+ ⟨η, y⟩+
∑
i

⟨ξ ⊗ η, [ai, x]⊗ bi + ai ⊗ [bi, y]⟩+
(
order 3 in (ξ, η)

)
where we set r =

∑
i ai ⊗ bi, so that r+(ξ) =

∑
i⟨bi, ξ⟩ai, and r−(ξ) =∑

i⟨ai, ξ⟩bi. Therefore

[RWX − id] : g⊕ g→ g⊗ g

(x, y) 7→ [r, x⊗ 1 + 1⊗ y].

Then RWX satisfies all the conditions of Definition 0.1.
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- c - Unicity of braidings

Let R and R′ be two elements of Braid(g). We know that the maps
[R− id] and [R′ − id] : mG∗×G∗/m2

G∗×G∗ → m2
G∗×G∗/m3

G∗×G∗ coincide, so
(R−R′)(mG∗×G∗) ⊂ m3

G∗×G∗ . Let us prove by induction over k ≥ 3 that

(R−R′)(mG∗×G∗) ⊂ mk
G∗×G∗ . (2.6)

As we have seen, (2.6) holds for k = 3. Assume that it holds for some
k and let us prove it for k + 1. Let us set S = R−R′. Then S is a linear
map OG∗×G∗ → mk

G∗×G∗ . Moreover, we have for f, g ∈ OG∗×G∗

S(fg) = R(f)S(g) + S(f)R′(g). (2.7)

Identity (2.7) allows to show by induction:

Lemma 2.1. For any a ≥ 1, we have S(ma
G∗×G∗) ⊂ ma+k−1

G∗×G∗.

Proof. This holds when a = 1 due to (2.6).
Assume that we proved S(ma

G∗×G∗) ⊂ ma+k−1
G∗×G∗ ; then for f ∈ ma

G∗×G∗ and
g ∈ mG∗×G∗ ,

S(fg) = R(f)S(g) + S(f)R′(g) ∈
∈ ma

G∗×G∗ ·mk
G∗×G∗ +ma+k−1

G∗×G∗ ·mG∗×G∗ ⊂ ma+k
G∗×G∗ .

Therefore S(ma+1
G∗×G∗) ⊂ ma+k

G∗×G∗ .

Let us now use the fact that OG∗ is a topological Hopf algebra, equipped
with a decreasing Hopf filtrationOG∗ ⊃ mG∗ ⊃ m2

G∗ ⊃ · · · . The completion
of the associated graded of OG∗ is a commutative and cocommutative Hopf
algebra

ĝr(OG∗) = ⊕̂i gr
i(OG∗) = Ŝ(g).

OG∗×G∗ is also filtered and ĝr(OG∗×G∗) = Ŝ(g)⊗̄2. Then Lemma 2.1, to-
gether with identity (2.7), implies:

Lemma 2.2. Define gr(S) : ĝr
(
O⊗̄2G∗

)
→ ĝr

(
O⊗̄2G∗

)
as the degree k map

such that gr(S) : ma
G∗×G∗/m

a+1
G∗×G∗ → ma+k−1

G∗×G∗/m
a+k
G∗×G∗ is induced by S for

a ≥ 0. Then gr(S) is a derivation of degree k − 1 of gr(OG∗×G∗).

Comparing the analogues of the identities (γ) for R and R′, we get :(
S1,3 ◦ R2,3 +R′1,3 ◦ S2,3

)
◦ (∆O ⊗ id) = (∆O ⊗ id) ◦ S,

and (
S1,3 ◦ R1,2 +R′1,3 ◦ S1,2

)
◦ (id⊗∆O) = (id⊗∆O) ◦ S

13



Both sides of each identity are algebra morphisms OG∗×G∗ → OG∗×G∗×G∗

taking ma
G∗×G∗ to ma+k−1

G∗×G∗×G∗ . The associated graded morphisms are de-
gree k − 1 algebra morphisms ĝr(OG∗×G∗) → ĝr(OG∗×G∗×G∗). The corre-
sponding identities between these morphisms are(
gr (S)1,3 + gr (S)2,3

)
◦ (∆0 ⊗ id) = (∆0 ⊗ id) ◦ gr(S),

and(
gr (S)1,3 + gr (S)1,2

)
◦ (id⊗∆0) = (id⊗∆0) ◦ gr(S),

(2.8)

where ∆0 : Ŝ(g) → Ŝ(g)⊗̄Ŝ(g) is the coproduct map of gr(S) = ĝr(OG∗).
These identities imply that the image of gr(S) is contained in Prim(Ŝ(g))⊗
Prim(Ŝ(g)). Since Prim(Ŝ(g)) = S1(g) = gr1(OG∗), the image of gr(S) is
therefore contained in gr1(OG∗)⊗2 ⊂ gr2(OG∗×G∗). Since the image of
gr(S) is also contained in ⊗̂i≥3 gr

i(OG∗×G∗), we get gr(S) = 0. It fol-
lows that S(mG∗×G∗) ⊂ mk+1

G∗×G∗ . This proves the induction step of (2.6).

Therefore S(mG∗×G∗) ⊂ ∩k≥0mk
G∗×G∗ = 0. Since S is a derivation, we get

S = 0. Therefore R = R′. This proves that Braid(g) contains at most one
element.

§ 3 Cohomological construction of ρ

Let (g, r) be a finite-dimensional quasitriangular Lie bialgebra. The
purpose of this section is to construct the unique element ρ of Lift(g) by
cohomological arguments, thus avoiding the use of associators. Our main
result is:

Theorem 3.1. Lift(g) contains an element ρ.

This result will be proved in Subsection 3.c. In Subsection 3.a, we introduce
variants and truncations of the sets Lift(g) and Braid(g). Subsection 3.b
contains the cohomological results allowing to construct ρ by successive
approximations.

- a - Variants of the sets Braid(g) and Lift(g)

We denote by Braid′(g) the set of all Poisson automorphisms ofOG∗×G∗ ,
satisfying conditions (α), (γ) and (δ) of Definition 0.1. We denote by
Lift′(g) the set of all elements ρ of OG∗×G∗ , satisfying conditions (α), (γ)
and (δ) of Definition 0.4. The map ρ 7→ exp(Vρ) then restrict to a map
Lift′(g)→ Braid′(g).

14



If n is an integer, we define Braid′≤n(g) (resp., Braid≤n(g)) as the set of
all Poisson automorphisms of OG∗×G∗

/
mn

G∗×G∗ , satisfying conditions (α),
(γ) and (δ) (resp. (α), (β), (γ) and (δ)) of Definition 0.1, where O(G∗)k is

replaced by O(G∗)k
/
mn

(G∗)k
, k = 1, 2, 3.

Similarly, we define Lift′≤n(g) (resp., Lift≤n(g)) as the set of all lifts
ρ ∈ OG∗×G∗/mn

G∗×G∗ , satisfying conditions (α), (γ) and (δ) (resp. (α), (β),
(γ) and (δ)) of Definition 0.4, where O(G∗)k is replaced by O(G∗)k/m

n
(G∗)k

,

k = 1, 2, 3. Then ρ 7→ exp(Vρ) defines a map Lift′≤n(g)→ Braid′≤n(g).

Lemma 3.2. We have:

1. The natural inclusions Lift(g) ⊂ Lift′(g), Braid(g) ⊂ Braid′(g),
Lift≤n(g) ⊂ Lift′≤n(g) and Braid≤n(g) ⊂ Braid′≤n(g) are all equalities.

2. The set Braid≤n(g) consists of only one element, R̄(n)
WX, which is the

automorphism of OG∗×G∗/mn
G∗×G∗ induced by the Weinstein-Xu au-

tomorphism.

Proof. One can repeat the proof of the unicity part of Theorem 0.3 to
show that the sets Braid′≤n(g), Braid≤n(g) and Braid′(g) all contain at most
one element. Since RWX is an element of Braid(g), we get
Braid(g) = Braid′(g) = {RWX}. In the same way, the automorphism

R̄(n)
WX of OG∗×G∗

/
mn

G∗×G∗ induced by RWX is an element of Braid′≤n(g)

and of Braid≤n(g), so Braid′≤n(g) = Braid≤n(g) =
{
R̄(n)

WX

}
. This proves

part 2 and the equalities beween the sets of braidings of part 1.

Now Lift(g) is nothing but the preimage of Braid(g) by the map

exp : Lift′(g)→ Braid′(g)

ρ 7→ exp(Vρ);

similarly, Lift≤n(g) is the preimage of Braid≤n(g) by the map exp : Lift′≤n(g)
→ Braid′≤n(g). So we get Lift(g) = Lift′(g) and Lift≤n(g) = Lift′≤n(g).

- b - A map Lift′≤n(g)→ Lift′≤n+1(g)

We have canonical projection maps Lift′≤n(g)
πn−1−−−→ Lift′≤n−1(g)→ · · · .

Then
Lift′(g) = lim

←−
n

(
Lift′≤n(g)

)
.

To construct an element of Lift′(g), we will therefore construct a sequence
of maps

λn : Lift′≤n(g)→ Lift′≤n+1(g), n ≥ 3,

such that πn ◦ λn = id.
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Let ρn ∈ OG∗×G∗/mn
G∗×G∗ be an element of Lift′≤n(g). We have then

(ϵ⊗ id)(ρn) = (id⊗ϵ)(ρn) = 0,

(∆⊗ id)(ρn) = ρ1,3n ⋆ ρ2,3n , (id⊗∆)(ρn) = ρ1,3n ⋆ ρ1,2n ,

[ρn] = r.

Let us take a lift ρ̃n ∈ OG∗×G∗/mn+1
G∗×G∗ of ρn such that (ϵ ⊗ id)(ρ̃n) =

(id⊗ϵ)(ρ̃n) = 0. Set

α = (∆⊗ id)(ρ̃n)− ρ̃ 1,3
n ⋆ ρ̃ 2,3

n ,

β = (id⊗∆)(ρ̃n) = ρ̃ 1,3
n ⋆ ρ̃ 1,2

n .
(3.9)

Then α, β ∈ mn
(O∗)3/m

n+1
(O∗)3

. Moreover

(ϵ⊗ id⊗ id)(α) = (id⊗ ϵ⊗ id)(α) = (id⊗ id⊗ ϵ)(α) = 0,

(ϵ⊗ id⊗ id)(β) = (id⊗ ϵ⊗ id)(β) = (id⊗ id⊗ ϵ)(β) = 0.

Let σ be an element of mn
G∗×G∗/m

n+1
G∗×G∗ . Set ρn+1 = ρ̃n + σ. Then

ρn+1 belongs to Lift′≤n+1(g) if and only if:

(ϵ⊗ id)(σ) = (id⊗ ϵ)(σ) = 0, (3.10)

(d⊗ id)(σ) = −α, (id⊗d)(σ) = −β. (3.11)

Here, we identify mn
G∗×G∗/m

n+1
G∗×G∗ with Sn(g ⊕ g) and mn

(O∗)3/m
n+1
(O∗)3

with Sn(g⊕ g⊕ g). Then the map d : S·(g)→ S·(g⊕ g) is the Hochschild
coboundary map, taking f to ∆0(f)−f⊗1−1⊗f (∆0 is the cocommutative
coproduct of S·(g)). Identities (3.10) and (3.11) follow from the identities

f ⋆ (h+ g) = f ⋆ h+ g, (f + g) ⋆ h = f ⋆ h+ g, (3.12)

when f, h ∈ m2
(G∗)k

/mn+1
(G∗)k

and g ∈ mn
(G∗)k

/mn+1
(G∗)k

.

Let us now recall some results of co-Hochschild cohomology. Let d(2) :
S·(g⊕ g)→ S·(g⊕ g⊕ g) be defined by d(2)(f) = (d⊗ id)(f)− (id⊗d)(f)
(we identify S·(g⊕k) with S·(g)⊗k). Then d(2) ◦ d = 0. The cohomology
group H1

co-Hoch = Ker(d(2))/ Im(d) identifies with ∧2(g). The canonical
map Ker(d(2)) → ∧2(g) is given by the antisymmetrization f 7→ f − f2,1.
The 0-th cohomology group H0

co-Hoch = Ker(d) is equal to g. We then
prove:
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Lemma 3.3. There exists a solution σ ∈ mn
G∗×G∗

/
mn+1

G∗×G∗ of equations
(3.10) and (3.11) if and only if α, β satisfy the equations:

(id⊗ id⊗d)(α) = (d⊗ id⊗ id)(β), (3.13)

(d(2) ⊗ id)(α) = (id⊗d(2)(β) = 0, (3.14)

α1,2,3 = α2,1,3, β1,2,3 = β1,3,2. (3.15)

If these conditions are satisfied, then the solution is unique.

Proof. Assume that σ exists. Then both sides of (3.13) are equal to
−(d⊗ d)(σ), so we have (3.13). (3.14) follows from d(2) ◦ d = 0 and (3.15)
follows from the fact that the image of d : S·(g)→ S·(g⊕ g) is contained
in the subspace of invariants under the permutation of both summands of
g⊕ g. So (3.13), (3.14) and (3.15) are satisfied.

Assume now that these identities are satisfied. The equalities (d(2) ⊗
id)(α) = 0 and α1,2,3 = α2,1,3 imply that α corresponds to zero inH1

co-Hoch⊗
Sn−2(g) = ∧2(g) ⊗ Sn−2(g), hence there exists σ′ ∈ Sn(g ⊕ g), such that
(d ⊗ id)(σ′) = −α. In the same way, there exists σ′′ ∈ Sn(g ⊕ g), such
that (id⊗d)(σ′′) = −β. σ′ is well-defined only up to addition of an ele-
ment of g⊗Sn−1(g), and σ′′ is well-defined up to addition of an element of
Sn−1(g)⊗g. Now (3.13) implies that (d⊗d)(σ′−σ′′) = 0. Since Ker(d) = g,
we get σ′ − σ′′ ∈ g ⊗ Sn−1(g) + Sn−1(g) ⊗ g. Let σ′ − σ′′ = σ′0 + σ′′0 ,
σ′0 ∈ g⊗ Sn−1(g), σ′′0 ∈ Sn−1(g)⊗ g. Set σ = σ′ − σ′0 = σ′′ + σ′′0 . Then

(d⊗ id)(σ) = (d⊗ id)(σ′) = −α
and (id⊗d)(σ) = (id⊗d)(σ′′) = −β.

So equations (3.13), (3.14) and (3.15) imply the existence of a solution
σ of (3.11). Then (ϵ⊗ ϵ) ◦ d = −ϵ, so

(ϵ⊗ id)(σ) = −(ϵ⊗ ϵ) ◦ (d⊗ id)(σ) = (ϵ⊗ ϵ⊗ id)(α) = 0,

and in the same way (id⊗ ϵ)(σ) = 0. So σ satisfies also equation (3.10).

The unicity of σ then follows from the fact that Ker(d⊗ id)∩Ker(id⊗d) =
g ⊗ g ⊂ S2(g ⊕ g), so the intersection of Ker(d ⊗ id) ∩ Ker(id⊗d) with
Sn(g⊕ g) is zero as n ≥ 3.

Proposition 3.4. The elements α and β defined by (3.9) satisfy the iden-
tities (3.13), (3.14) and (3.15).

Proof. Apply ∆⊗ id⊗ id− id⊗∆⊗ id to the identity

(∆⊗ id)(ρ̃n) = ρ̃ 1,3
n ⋆ ρ̃ 2,3

n + α. (3.16)
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This yields an identity in O(G∗)4/m
n+1
(G∗)4

. Its left side vanishes since

(∆⊗ id− id⊗∆) ◦∆ = 0. Using again (3.16), we get

0 = (ρ̃ 1,4
n ⋆ ρ̃ 2,4

n +α1,2,4)⋆ ρ̃ 3,4
n +α12,3,4− ρ̃ 1,4

n ⋆ (ρ̃ 2,4
n ⋆ ρ̃ 3,4

n +α2,3,4)−α1,23,4

(we use the notation γ12,3,4 = (∆ ⊗ id⊗ id)(γ), γ1,23,4 = (id⊗∆ ⊗ id)(γ),
etc.). Now identities (3.12) yield:

0 = (ρ̃ 1,4
n ⋆ ρ̃ 2,4

n ⋆ ρ̃ 3,4
n +α1,2,4)+α12,3,4− (ρ̃ 1,4

n ⋆ ρ̃ 2,4
n ⋆ ρ̃ 3,4

n +α2,3,4)−α1,23,4

that is (
d(2) ⊗ id

)
(α) = 0.

Applying id⊗∆⊗ id− id⊗ id⊗∆ to the identity

(id⊗∆)(ρ̃n) = ρ̃ 1,3
n ⋆ ρ̃ 1,2

n + β, (3.17)

we get in the same way (
id⊗d(2)

)
(β) = 0.

So α and β satisfy (3.14).

Apply now id⊗ id⊗∆ to (3.16), ∆⊗ id⊗ id to (3.17), and substract the
resulting equalities. Using again (3.16) and (3.17), we get

0 =(ρ̃ 1,4
n ⋆ ρ̃ 1,3

n + β1,3,4) ⋆ (ρ̃ 2,4
n ⋆ ρ̃ 2,3

n + β2,3,4) + α12,3,4

− (ρ̃ 1,4
n ⋆ ρ̃ 2,4

n + α1,2,4) ⋆ (ρ̃ 1,3
n ⋆ ρ̃ 2,3

n + α1,2,3)− β1,2,34.

Using again identities (3.12), and the fact that ρ̃ 1,3
n ⋆ ρ̃ 2,4

n = ρ̃ 2,4
n ⋆ ρ̃ 1,3

n ,
we get

α12,3,4 − α1,2,3 − α1,2,4 = β1,2,34 − β1,2,3 − β1,2,4,

that is (d ⊗ id⊗ id)(α) = (id⊗ id⊗d)(β). So α and β satisfy (3.13). To

prove that they also satisfy (3.15), let us set

ψ = ρ̃ 1,2
n ⋆ ρ̃ 1,3

n ⋆ ρ̃ 2,3
n − ρ̃ 2,3

n ⋆ ρ̃ 1,3
n ⋆ ρ̃ 1,2

n

and let us prove:

Lemma 3.5. We have ψ = 0.

Proof of Lemma. Since ρ1,2n ⋆ ρ1,3n ⋆ ρ2,3n = ρ1,2n ⋆ ρ12,3n = ρ21,3n ⋆ ρ1,2n =
ρ2,3n ⋆ρ1,3n ⋆ρ1,2n , the class of ψ in O(G∗)3/m

n
(G∗)3 is zero, so ψ ∈ mn

(G∗)3/m
n+1
(G∗)3

.

We identify ψ with an element of Sn(g⊕ g⊕ g). Then
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ψ12,3,4 =ρ̃ 12,3
n ⋆ ρ̃ 12,4

n ⋆ ρ̃ 3,4
n − ρ̃ 3,4

n ⋆ ρ̃ 12,4
n ⋆ ρ̃ 12,3

n

=(ρ̃ 1,3
n ⋆ ρ̃ 2,3

n + α1,2,3) ⋆ (ρ̃ 1,4
n ⋆ ρ̃ 2,4

n + α1,2,4) ⋆ ρ̃ 3,4
n

− ρ̃ 3,4
n ⋆ (ρ̃ 1,4

n ⋆ ρ̃ 2,4
n + α1,2,4) ⋆ (ρ̃ 1,3

n ⋆ ρ̃ 2,3
n + α1,2,3)

=ρ̃ 1,3
n ⋆ ρ̃ 2,3

n ⋆ ρ̃ 1,4
n ⋆ ρ̃ 2,4

n ⋆ ρ̃ 3,4
n − ρ̃ 3,4

n ⋆ ρ̃ 1,4
n ⋆ ρ̃ 2,4

n ⋆ ρ̃ 1,3
n ⋆ ρ̃ 2,3

n

by virtue of (3.12)

=ρ̃ 1,3
n ⋆ ρ̃ 1,4

n ⋆ (ρ̃ 3,4
n ⋆ ρ̃ 2,4

n ⋆ ρ̃ 2,3
n + ψ2,3,4)

+ (−ρ̃ 1,3
n ⋆ ρ̃ 1,4

n ⋆ ρ̃ 3,4
n + ψ1,3,4) ⋆ ρ̃ 2,4

n ⋆ ρ̃ 2,3
n

since ρ̃ 1,3 ⋆ ρ̃ 2,4 = ρ̃ 2,4 ⋆ ρ̃ 1,3 and ρ̃ 1,4 ⋆ ρ̃ 2,3 = ρ̃ 2,3 ⋆ ρ̃ 1,4

=ψ1,3,4 + ψ2,3,4 by virtue of (3.12).

We have also

ψ1,23,4 =(ρ̃ 1,3
n ⋆ ρ̃ 1,2

n + β1,2,3) ⋆ ρ̃ 1,4
n ⋆ (ρ̃ 2,4

n ⋆ ρ̃ 3,4
n + α2,3,4)

− (ρ̃ 2,4
n ⋆ ρ̃ 3,4

n + α2,3,4) ⋆ ρ̃ 1,4
n ⋆ (ρ̃ 1,3

n ⋆ ρ̃ 1,2
n + β1,2,3)

=ρ̃ 1,3
n ⋆ ρ̃ 1,2

n ⋆ ρ̃ 1,4
n ⋆ ρ̃ 2,4

n ⋆ ρ̃ 3,4
n − ρ̃ 2,4

n ⋆ ρ̃ 3,4
n ⋆ ρ̃ 1,4

n ⋆ ρ̃ 1,3
n ⋆ ρ̃ 1,2

n

=ρ̃ 1,3
n ⋆ (ρ̃ 2,4

n ⋆ ρ̃ 1,4
n ⋆ ρ̃ 1,2

n + ψ1,2,4) ⋆ ρ̃ 3,4
n

+ ρ̃ 2,4
n ⋆ (−ρ̃ 1,3

n ⋆ ρ̃ 1,4
n ⋆ ρ̃ 3,4

n + ψ1,3,4) ⋆ ρ̃ 1,2
n

=ψ1,2,4 + ψ2,3,4.

In the same way, one proves that ψ1,2,34 = ψ1,2,3 + ψ1,2,4. Therefore,
we get

(d⊗ id⊗ id)(ψ) = (id⊗d⊗ id)(ψ) = (id⊗ id⊗d)(ψ) = 0,

so ψ ∈ g⊗ g⊗ g. When n > 3, this implies ψ = 0. When n = 3, ψ is equal
to [r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] and is also zero.

End of proof of Proposition 3.4 Let us now prove that α and β
satisfy equation (3.15). For this, we first prove:

Lemma 3.6. We have

ρ̃ 1,2
n ⋆ ρ̃ 12,3

n = ρ̃ 21,3
n ⋆ ρ̃ 1,2

n (3.18)

(equality in O(G∗)3
/
mn+1

(G∗)3
).

Proof of Lemma. We will prove that if

f ∈ (mG∗⊗̄mG∗)
/(

mn+1
G∗×G∗ ∩ (mG∗⊗̄mG∗)

)
,

the equality
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ρ̃ 1,2
n ⋆ f12,3 = f21,3 ⋆ ρ̃ 1,2

n (3.19)

holds in O(G∗)3
/
mn+1

(G∗)3
. There exist element f ′i , f

′′
i of mG∗ , such that f is

equal to the class of
∑

i f
′
i ⊗ f ′′i . Then we have ρ̃ 1,2

n ⋆ (f ′i)
12 = (f ′i)

21 ⋆ ρ̃ 1,2
n

(equality in O(G∗)3
/
mn

(G∗)3), because ρn ∈ Lift′≤n(g) = Lift′≤n(g) by virtue

of Lemma 3.2. Tensoring this identity with f ′′i ∈ mG∗ , we get(
ρ̃ 1,2
n ⋆ (f ′i)

12
)
(f ′′i )

3 =
(
(f ′i)

21 ⋆ ρ̃ 1,2
n

)
(f ′′i )

3,

an equality in (
OG∗×G∗⊗̄mG∗

)/(
mn

G∗×G∗⊗̄mG∗
)

and therefore also in O(G∗)3
/
mn+1

(G∗)3
. Summing over all indices i, we get

(3.19), which implies (3.18) by taking f = ρ̃n. Plugging (3.16) into

(3.18), we get

ρ̃ 1,2
n ⋆ (ρ̃ 1,3

n ⋆ ρ̃ 2,3
n + α1,2,3) = (ρ̃ 2,3

n ⋆ ρ̃ 1,3
n + α2,1,3) ⋆ ρ̃ 1,2

n .

Then (3.12) yields:

α2,1,3 − α1,2,3 = ρ̃ 1,2
n ⋆ ρ̃ 1,3

n ⋆ ρ̃ 2,3
n − ρ̃ 2,3

n ⋆ ρ̃ 1,3
n ⋆ ρ̃ 1,2

n ,

so Lemma 3.5 gives:
α2,1,3 − α1,2,3 = 0.

In the same way, we have

ρ̃ 2,3
n ⋆ ρ̃ 1,23

n = ρ̃ 1,32
n ⋆ ρ̃ 2,3

n ,

so by (3.17), we get

ρ̃ 2,3
n ⋆ (ρ̃ 1,3

n ⋆ ρ̃ 1,2
n + β1,2,3) = (ρ̃ 1,2

n ⋆ ρ̃ 1,3
n + β1,3,2) ⋆ ρ̃ 2,3

n ,

so β1,2,3 − β1,3,2 = ρ̃ 1,2
n ⋆ ρ̃ 1,3

n ⋆ ρ̃ 2,3
n − ρ̃ 2,3

n ⋆ ρ̃ 1,3
n ⋆ ρ̃ 1,2

n , so by Lemma 3.5,
β1,2,3 − β1,3,2 = 0. So α and β satisfy equation (3.15).

Let us now construct the map λn : Lift′≤n(g)→ Lift′≤n+1(g). Let ρ 7→ ρ̃ be
any map

{
ρ ∈ OG∗×G∗

/
mn

G∗×G∗

∣∣∣ (ϵ⊗ id)(ρ) = (id⊗ ϵ)(ρ) = 0
}

→
{
ρ̃ ∈ OG∗×G∗

/
mn+1

G∗×G∗

∣∣∣ (ϵ⊗ id)(ρ̃) = (id⊗ ϵ)(ρ̃) = 0
}
,
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which is a section of the canonical projection map (we may take ρ 7→ ρ̃
linear). If ρn ∈ Lift′≤n(g), we define α and β by (3.9). Then Propo-
sition 3.4 and Lemma 3.3 allow us to construct a unique element σ ∈
mn

G∗×G∗
/
mn+1

G∗×G∗ , such that ρ̃n + σ ∈ Lift′≤n+1(g). We then set

λn(ρn) = ρ̃n + σ.

This defines the desired map λn : Lift′≤n(g)→ Lift′≤n+1(g).

- c - Proof of Theorem 3.1

r ∈ g⊗ g defines an element ρ3 of Lift′≤3(g). Applying to it λ3, λ4, . . . ,
we define a sequence ρn of elements of Lift′≤n(g), and therefore an element
ρ ∈ Lift′(g). According to Lemma 3.2, ρ is then an element of Lift(g).

§ 4 Construction of universal lifts (proof of Theorem 0.10)

Theorem 0.10 can be proved in the same way as its “non-universal”
counterpart Theorem 0.8:

1. the unicity part is proved using the same argument;

2. the existence part can be proved either using the map Quant(K) →
Liftuniv, and the nonemptiness of Quant(K) (see [EK]); or it can be
proved following the arguments of Section 4.

§ 5 Appendix: a commutative diagram related to QFSH algebras

The aim of this section is to prove the following lemma:

Lemma 5.1. Let σ be an arbitrary element of m~ and [σ] be its class in
m~
/
(~m~ + m2

~). Since m~
/
(~m~ + m2

~) identifies with g, we have [σ] ∈ g.
Since m~ ⊂ ~U~(g), σ is an element of ~U~(g). Then

(
σ
~ mod ~

)
is an

element of U(g). We have the following identity in U(g) :(σ
~
mod ~

)
= [σ].

This lemma clearly implies Lemma 1.2: if σ =
∑

i σ
1
i⊗σ2i ∈ m~⊗̄m~ satisfies

the hypothesis of Lemma 1.2, then [σ] =
∑

i[σ
1
i ]⊗ [σ2i ] ∈ g⊗2 and
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σ

~2
∣∣∣
U⊗̂2
~ →U⊗2

=
∑
i

(
σ1i
~
⊗ σ2i

~

)∣∣∣∣
U⊗̂2
~ →U⊗2

=
∑
i

σ1i
~2

∣∣∣∣
U~→U

⊗ σ2i
~2

∣∣∣∣
U~→U

=
∑
i

[σ1i ]⊗ [σ2i ] (by Lemma 5.1)

= [σ].

We use the notation x|
U⊗̂k
~ →U⊗k

for (xmod ~), when x ∈ U~(g)
⊗̂k.

More generally, in this section, we will consider a Lie bialgebra (g, δ) over
a field K, (U~(g),∆) a quantization of U(g) and the subalgebra U~(g)

′ ⊂
U~(g), where

U~(g)
′ =

{
x ∈ U~(g)

∣∣ ∀n ∈ N, δ(n)(x) ∈ ~nU~(g)
⊗̂n }

(where δ(n) = (id−η ◦ ε)⊗n ◦∆(n)). The definition of U~(g)
′ yields, when

n = 1 or 2:

Lemma 5.2. Let f be an element of U~(g)
′. We have:

• f − ε(f) ∈ ~U~(g)

• f−ε(f)
~

∣∣∣
U~→U

∈ g ⊂ U(g)

According to a theorem of Drinfeld (see [Dr] and also [Ga]) the quantized
formal series Hopf algebra U~(g)

′ is a quantization of the function algebra
OG∗ . The projection U~(g)

′/~U~(g)
′ → OG∗ ≃ U(g∗)∗ may be described

as follows:

Theorem 5.3. For f ∈ U~(g)
′, let f |O~→O be its class in U~(g)

′/~U~(g)
′.

There exists a unique Hopf pairing U(g∗) ⊗
(
U~(g)

′/~U~(g)
′) → K, such

that

∀ξ ∈ g∗,∀f ∈ U~(g)
′
⟨
ξ, f
∣∣
O~→O

⟩
=

⟨
ξ,
f − ε(f)

~

∣∣∣∣
U~→U

⟩
g×g∗

.

This pairing induces an isomorphism U~(g)
′/~U~(g)

′ ∼−→
λ
U(g∗)∗.

We can now reformulate Lemma 5.1 (in this section, we will use the nota-
tion (H)0 for the maximal ideal Ker(ε) of a Hopf algebra H):
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Proposition 5.4. The following diagram commutes

(
U~(g)

′)
0

/(
~
(
U~(g)

′)
0
+
(
U~(g)

′)2
0

) (a)
∼−−→

(
U(g∗)∗

)
0

/(
U(g∗)∗

)2
0

(b) ↓ ↓ (d)

~U~(g)
/
~2U~(g)

(c)
∼−→ U(g) ←↩

cang
g

where cang : g ↪→ U(g) is the canonical injection and the other maps are
given by:

(a) is the composed map(
U~(g)

′)
0

/(
~
(
U~(g)

′)
0
+
(
U~(g)

′)2
0

)
∼−→
((
U~(g)

′)
0

/
~
(
U~(g)

′)
0

)/((
U~(g)

′)
0

/
~
(
U~(g)

′)
0

)2
→
(
U(g∗)∗

)
0

/(
U(g∗)∗

)2
0

where the last map is induced by λ : U~(g)
′/~U~(g)

′ ∼−→
λ
U(g∗)∗ (see

Theorem 5.3),

(b) is the quotient map of the injection : (U~(g)
′)0 ↪→ ~U~(g) with respect

to the ideals ~
(
U~(g)

′)
0
+
(
U~(g)

′)2
0
⊂
(
U~(g)

′)
0
in the left hand side,

and ~2U~(g) ⊂ ~U~(g) in the right hand side,

(c) is the map

~U~(g)
/
~2U~(g)→ U~(g)

/
~U~(g) ≃ U(g)

x 7→ ~−1x,

(d) is induced by the pairing g∗ ⊗
(
U(g∗)∗

)
0

/(
U(g∗)∗

)2
0
→ K, quotient

of the pairing g∗ ⊗
(
U(g∗)∗

)
0
→ K, given by ξ ⊗ T 7→ ⟨T, cang∗(ξ)⟩

(cang∗ : g∗ ↪→ U(g∗) is the canonical injection).

Proof. Let φ′ be an element of
(
U~(g)

′)
0
. Recall that [φ′] denotes its

class in
(
U~(g)

′)
0

/(
~
(
U~(g)

′)
0
+
(
U~(g)

′)2
0

)
. Thanks to Lemma 5.2, we

have φ′

~

∣∣∣
U~→U

∈ g so (c) ◦ (b) ([φ′]) = cang

(
φ′

~

∣∣∣
U~→U

)
. Thus we should

show that

(d) ◦ (a)
(
[φ′]
)
=
φ′

~

∣∣∣∣
U~→U

. (5.20)

Let S be a supplementary of g∗ in U(g∗)0 (e.g., the image of ⊕i≥2S
i(g∗)

under the symmetrization map). For x ∈ g, let fx ∈ U(g∗)∗0 be defined
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by fx(ξ) = ⟨ξ, x⟩ for ξ ∈ g∗ and fx|S = 0. Then the class [fx]0 of fx in

U(g∗)∗0
/(
U(g∗)∗0

)2
is independent of S. Moreover, it is clear that we have

the identity (d)(fx) = x for any x ∈ g, so

(d)

([
f φ′

~

∣∣∣
U~→U

]
0

)
=
φ′

~

∣∣∣∣
U~→U

.

So the identity (5.20) (and thus the proposition) will be true if

(a)([φ′]) =

[
f φ′

~

∣∣∣
U~→U

]
0

. (5.21)

Both sides belong to U(g∗)∗0
/(
U(g∗)∗0

)2
= g, so it is enough to show that

their pairings with any element ξ ∈ g∗ coincide. We have⟨
ξ,

[
f φ′

~

∣∣∣
U~→U

]
0

⟩
=

⟨
ξ,
φ′

~

∣∣∣∣
U~→U

⟩
,

and

⟨
ξ, (a)([φ′])

⟩
=

⟨
ξ,
φ′

~

∣∣∣∣
U~→U

⟩
by construction of (a),

which proves identity (5.21).
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