Uniqueness of braidings of quasitriangular Lie bialgebras and lifts of classical r-matrices

Benjamin Enriquez ${ }^{\dagger a}$, Fabio Gavarini ${ }^{\ddagger}$ and Gilles Halbout ${ }^{\dagger b}$
${ }^{\dagger}$ Institut de Recherche Mathématique Avancée de Strasbourg UMR 7501 de l'Université Louis Pasteur et du CNRS 7, rue R. Descartes F-67084 Strasbourg $\dagger a$ e-mail: enriquez@math.u-strasbg.fr
${ }^{\dagger b}$ e-mail:halbout@math.u-strasbg.fr
\ddagger Dipartimento di Matematica Università degli Studi di Roma "Tor Vergata" Via della Ricerca Scientifica, 1 - I-00133 Roma, Italy e-mail: gavarini@mat.uniroma2.it

March 20, 2012

Abstract

It is known that any quantization of a quasitriangular Lie bialgebra \mathfrak{g} gives rise to a braiding on the dual Poisson-Lie formal group G^{*}. We show that this braiding always coincides with the Weinstein-Xu braiding. We show that this braiding is the "time one automorphism" of a Hamiltonian vector field, corresponding to a certain formal function on $G^{*} \times G^{*}$, the "lift of r ", which can be expressed in terms of r by universal formulas. The lift of r coincides with the classical limit of the rescaled logarithm of any R-matrix quantizing it.

This is the authors' post-print version of a paper published in International Mathematics Research Notices (2003), no. 46, 2461-2486
DOI: 10.1155/S1073792803208138 — Copyright © 2012 Oxford University Press
International Mathematics Research Notices is available online at: http://imrn.oxfordjournals.org/

§ 0 Outline of results

- a - Quasitriangular Lie algebras

We fix a base field \mathbb{K} of characteristic zero. Let (\mathfrak{g}, r) be a finite dimensional quasitriangular Lie bialgebra. Recall that this means that

- $(\mathfrak{g},[-,-], \delta)$ is a Lie bialgebra;
- $r \in \mathfrak{g} \otimes \mathfrak{g}$ is a solution of the classical Yang-Baxter equation (CYBE), i.e.,

$$
\left[r^{1,2}, r^{1,3}\right]+\left[r^{1,2}, r^{2,3}\right]+\left[r^{1,3}, r^{2,3}\right]=0 ;
$$

- we have $\delta(x)=[r, x \otimes 1+1 \otimes x]$ for any $x \in \mathfrak{g}$, so in particular, $r+r^{2,1}$ is \mathfrak{g}-invariant.
- b- Quant (\mathfrak{g})

A quantization of (\mathfrak{g}, r) is a quantized universal enveloping (QUE) algebra $\left(U_{\hbar}(\mathfrak{g}), m, \Delta\right)$ quantizing $(\mathfrak{g},[-,-], \delta)$, together with an element $R \in U_{\hbar}(\mathfrak{g})^{\otimes 2}$, such that if $x \mapsto(x \bmod \hbar)$ is the canonical projection $U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} 2} \rightarrow U(\mathfrak{g})^{\widehat{\otimes} 2}$ then

- $\Delta^{\mathrm{op}}=R \Delta R^{-1}$,
- $(\Delta \otimes \mathrm{id})(R)=R^{1,3} R^{2,3},(\mathrm{id} \otimes \Delta)(R)=R^{1,3} R^{1,2}$,
- $(\epsilon \otimes \mathrm{id})(R)=(\mathrm{id} \otimes \epsilon)(R)=1$ where $\epsilon: U_{\hbar}(\mathfrak{g}) \rightarrow \mathbb{K}[[\hbar]]$ is the counit of $U_{\hbar}(\mathfrak{g})$,
- $(R \bmod \hbar)=1,\left(\frac{R-1}{\hbar} \bmod \hbar\right)=r \in \mathfrak{g} \otimes \mathfrak{g} \subset U(\mathfrak{g}) \otimes U(\mathfrak{g})$.

We denote by $\operatorname{Quant}(\mathfrak{g})$ the set of all quantizations of (\mathfrak{g}, r). According to $[E K]$, we have a map $\operatorname{Assoc}(\mathbb{K}) \rightarrow \operatorname{Quant}(\mathfrak{g})$ (where $\operatorname{Assoc}(\mathbb{K})$ is the set of all Lie associators defined over $\mathbb{K})$, so Quant (\mathfrak{g}) is nonempty.

- c-Braid(g)

Let G^{*} be the formal group corresponding to the dual Lie bialgebra \mathfrak{g}^{*}, and let $\mathcal{O}_{G^{*}}$ be its function ring; so $\mathcal{O}_{G^{*}}=\left(U\left(\mathfrak{g}^{*}\right)\right)^{*}$; this is a formal series Hopf algebra, equiped with coproduct $\Delta_{\mathcal{O}}: \mathcal{O}_{G^{*}} \rightarrow \mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}(\bar{\otimes}$ is the tensor product of the formal series algebras, $\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}=\mathcal{O}_{G^{*} \times G^{*}}$ is the function ring of $G^{*} \times G^{*}$) and counit $\epsilon_{\mathcal{O}}: \mathcal{O}_{G^{*}} \rightarrow \mathbb{K}$.

Definition 0.1. A braiding of G^{*} is a Poisson algebra automorphism \mathcal{R} of $\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}$ satisfying the conditions:
(α) $\left(\epsilon_{\mathcal{O}} \otimes \mathrm{id}\right) \circ \mathcal{R}=\epsilon_{\mathcal{O}} \otimes \mathrm{id},\left(\mathrm{id} \otimes \epsilon_{\mathcal{O}}\right) \circ \mathcal{R}=\mathrm{id} \otimes \epsilon_{\mathcal{O}}$,
(β) $\Delta_{\mathcal{O}}^{\mathrm{op}}=\mathcal{R} \circ \Delta_{\mathcal{O}}$,
(γ) $\mathcal{R}^{1,3} \circ \mathcal{R}^{2,3} \circ\left(\Delta_{\mathcal{O}} \otimes \mathrm{id}\right)=\left(\Delta_{\mathcal{O}} \otimes \mathrm{id}\right) \circ \mathcal{R}$, $\mathcal{R}^{1,3} \circ \mathcal{R}^{1,2} \circ\left(\mathrm{id} \otimes \Delta_{\mathcal{O}}\right)=\left(\mathrm{id} \otimes \Delta_{\mathcal{O}}\right) \circ \mathcal{R}$,
(δ) if $\mathfrak{m}_{G^{*} \times G^{*}}$ is the maximal ideal of $\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}$, then

- the automorphism $\mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}$ induced by \mathcal{R} is the identity,
- therefore \mathcal{R}-id induces a linear map $[\mathcal{R}-\mathrm{id}]: \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}$
$\rightarrow \mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}$, and if we use the natural identifications

$$
\begin{aligned}
& \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \stackrel{\sim}{\longrightarrow} \mathfrak{g} \oplus \mathfrak{g} \\
& \mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3} \xrightarrow{\sim}\left(S^{2}(\mathfrak{g})\right) \oplus(\mathfrak{g} \otimes \mathfrak{g}) \oplus\left(S^{2}(\mathfrak{g})\right),
\end{aligned}
$$

then $[\mathcal{R}-\mathrm{id}]$ coincides with the map

$$
(x, y) \mapsto(0,[r, x \otimes 1+1 \otimes y], 0) .
$$

We denote by $\operatorname{Braid}(\mathfrak{g})$ the set of all braidings of G^{*}.

- d - The Weinstein-Xu braiding

Define $\widetilde{\mathcal{R}}_{\mathrm{WX}}: G^{*} \times G^{*} \rightarrow G^{*} \times G^{*}$ by

$$
\begin{equation*}
\widetilde{\mathcal{R}}_{\mathrm{WX}}(u, v)=\left(\lambda_{R_{-}(v)}(u), \rho_{R_{+}(u)}(v)\right), \tag{0.1}
\end{equation*}
$$

where $R_{ \pm}: G^{*} \rightarrow G$ are the formal group morphisms exponentiating the Lie algebra morphisms $r_{ \pm}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$, where $r_{+}(\xi)=\langle r, \xi \otimes \mathrm{id}\rangle$ and $r_{-}(\xi)=-\langle r, \mathrm{id} \otimes \xi\rangle$, and λ, ρ are the left and right dressing actions of G on G^{*} (regular action on $G^{*}=D / G$ and on $G^{*}=D \backslash G$, where D is the double group of G).

Let $\mathcal{R}_{\mathrm{Wx}} \in \operatorname{Aut}\left(\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}\right)$ be the algebra automorphism induced be $\widetilde{\mathcal{R}}_{\mathrm{WX}}$. Then

$$
\mathcal{R}_{\mathrm{WX}} \in \operatorname{Braid}(\mathfrak{g})(\text { see }[\mathrm{WX}] \text { and }[\mathrm{GH} 2]) .
$$

- e - The Gavarini-Halbout map

If $\left(U_{\hbar}(\mathfrak{g})(\mathfrak{g}), m, \Delta, R\right)$ is a quantization of (\mathfrak{g}, r), define \mathcal{O}_{\hbar} as a quantized function algebra associated to $U_{\hbar}(\mathfrak{g})$. So

$$
\mathcal{O}_{\hbar}=\left\{f \in U_{\hbar}(\mathfrak{g}) \mid \forall n \geq 0, \delta^{(n)}(f) \in \hbar^{n} U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} n}\right\} ;
$$

where $\delta^{(n)}: U_{\hbar}(\mathfrak{g}) \rightarrow U_{\hbar}(\mathfrak{g})^{\otimes n}$ is defined by $\delta^{(n)}=(\mathrm{id}-\eta \circ \epsilon)^{\otimes n} \circ \Delta^{(n)}$. Then \mathcal{O}_{\hbar} is a topological Hopf subalgebra of $U_{\hbar}(\mathfrak{g})$, and it is a quantization of the Hopf-Poisson algebra $\mathcal{O}_{G^{*}}($ see $[\mathrm{Dr}, \mathrm{Ga}])$. In particular, $\mathcal{O}_{\hbar} / \hbar \mathcal{O}_{\hbar} \simeq \mathcal{O}_{G^{*}}$.

Theorem 0.2. (see $[G H]$ and also $[E H]$) The inner automorphism $\operatorname{Ad}(R)$: $x \mapsto R x R^{-1}$ of $U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} 2}$ restricts to an automorphism \mathcal{R}_{\hbar} of $\mathcal{O}_{\hbar}^{\bar{\otimes} 2}$. The reduction \mathcal{R} of \mathcal{R}_{\hbar} modulo \hbar is an outer automorphism of $\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}$, and $\mathcal{R} \in \operatorname{Braid}(\mathfrak{g})$.

The main part of this result was proved in $[\mathrm{GH}]$ (see also $[\mathrm{EH}]$). The remaining part is a consequence of Proposition 0.7. Therefore we have a map:

$$
\text { GH : Quant }(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g}) .
$$

- f - Unicity of braidings

Theorem 0.3. $\operatorname{Braid}(\mathfrak{g})$ contains only one element, so

$$
\operatorname{Braid}(\mathfrak{g})=\left\{\mathcal{R}_{\mathrm{WX}}\right\}
$$

In particular, the braiding \mathcal{R} constructed in Theorem 0.2 coincides with $\mathcal{R}_{\mathrm{WX}}$.

- g - Formal Poisson manifolds

Let A be an arbitrary Poisson formal series algebra; let us denote by \mathfrak{m}_{A} the maximal ideal of A, and let us assume that $\{A, A\} \subset \mathfrak{m}_{A}$. Then we have $\left\{\mathfrak{m}_{A}^{k}, \mathfrak{m}_{A}^{l}\right\} \subset \mathfrak{m}_{A}^{k+l-1}$, for any $k, l \geq 0$. For $f, g \in \mathfrak{m}_{A}^{2}$, the Campbell-Baker-Hausdorff (CBH) series

$$
f \star g=f+g+\frac{1}{2}\{f, g\}+\cdots+B_{k}(f, g)+\cdots
$$

converges in A with respect to the \mathfrak{m}_{A}-adic topology.
There is a unique Lie algebra morphism

$$
\begin{aligned}
V: A & \rightarrow \operatorname{Der}(A) \\
f & \mapsto\left(V_{f}: g \mapsto\{f, g\}\right) .
\end{aligned}
$$

Define $\operatorname{Der}^{+}(A)$ as the Lie subalgebra of $\operatorname{Der}(A)$ of all derivations taking each \mathfrak{m}_{A}^{k} to \mathfrak{m}_{A}^{k+1}. Then V restricts to a Lie algebra morphism $\mathfrak{m}_{A}^{2} \rightarrow$ $\operatorname{Der}^{+}(A)$. Moreover, for any derivation $D \in \operatorname{Der}^{+}(A)$, the series $\exp (D)$ is a well defined automorphism of A; this defines an exponential map

$$
\begin{aligned}
\exp : \operatorname{Der}^{+}(A) & \rightarrow \operatorname{Aut}(A) \\
D & \mapsto \exp (D)
\end{aligned}
$$

The series $\exp (D)$ is a well-defined automorphism of A. Let us denote by $\mathrm{Aut}^{+}(A)$ the subgroup of $\operatorname{Aut}(A)$ of all Poisson automorphisms θ such that the map $[\theta]: \mathfrak{m}_{A} / \mathfrak{m}_{A}^{2} \rightarrow \mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}$ induced by θ is the identity (i.e., Aut ${ }^{+}(A)$ is the subgroup of $\operatorname{Aut}(A)$ of all Poisson automorphisms which are tangent to the identity). Then $\exp (D)$ belongs to $\mathrm{Aut}^{+}(A)$, and the map exp : $\operatorname{Der}^{+}(A) \rightarrow \operatorname{Aut}^{+}(A)$ is a bijection.

- h - Lifts of the classical r-matrix

Using the previous section for the formal Poisson manifold $\mathcal{O}_{G^{*}}$, we can define lifts of the classical r-matrix r of the quasitriangular Lie bialgebra \mathfrak{g} :

Definition 0.4. A lift of r is an element $\rho \in \mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}$, such that:
$(\alpha)(\epsilon \otimes \mathrm{id})(\rho)=(\mathrm{id} \otimes \epsilon)(\rho)=0$,
$(\beta) \Delta^{\mathrm{op}}=\operatorname{Ad}\left(\exp \left(V_{\rho}\right)\right) \circ \Delta$ (equality of automorphisms of $\left.\mathcal{O}_{G^{*} \times G^{*}}\right)$,
$(\gamma)(\Delta \otimes \operatorname{id})(\rho)=\rho^{1,3} \star \rho^{2,3}, \quad(\operatorname{id} \otimes \Delta)(\rho)=\rho^{1,3} \star \rho^{1,2}$, where $\rho^{i, j}$ is the image of ρ by the $\operatorname{map}\left(\mathcal{O}_{G^{*}}\right)^{\bar{\otimes} 2} \rightarrow\left(\mathcal{O}_{G^{*}}\right)^{\bar{\otimes} 3}$ associated with (i, j),
(δ) the class $[\rho]$ of ρ in $\left(\mathfrak{m}_{G^{*}} / \mathfrak{m}_{G^{*}}^{2}\right)^{\otimes 2}=\mathfrak{g} \otimes \mathfrak{g}$ satisfies

$$
[\rho]=r .
$$

Remark: Condition (β) may be rewritten as follows:

$$
\forall f \in \mathcal{O}_{G^{*}}, \Delta^{\mathrm{op}}(f)=\rho \star \Delta(f) \star(-\rho) .
$$

It will follow from the proof of Theorem 0.8 that this condition may be dropped from the definition of $\operatorname{Lift}(\mathfrak{g})$ (see Lemma 3.2). We denote by $\operatorname{Lift}(\mathfrak{g})$ the set of all lifts of r.

- i - Sequence of maps $\operatorname{Quant}(\mathfrak{g}) \rightarrow \operatorname{Lift}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$

Let us recall an \hbar-adic valuation result for R-matrices:
Theorem 0.5. ([EH]) If $\left(U_{\hbar}(\mathfrak{g}), m, \Delta, R\right)$ is a quantization of (\mathfrak{g}, r), and if we set $\rho_{\hbar}=\hbar \log (R)$, then $\rho_{\hbar} \in \mathcal{O}_{\hbar}^{\otimes 2}$. If \mathfrak{m}_{\hbar} is the kernel of the counit $\operatorname{map} \mathcal{O}_{\hbar} \rightarrow \mathbb{K}[[\hbar]]$, we even have $\rho_{\hbar} \in \mathfrak{m}_{\hbar}^{\bar{\otimes} 2}$.

Corollary 0.6. The reduction ρ of ρ_{\hbar} modulo \hbar belongs to $\operatorname{Lift}(\mathfrak{g})$. So the assignment $\left(U_{\hbar}(\mathfrak{g}), m, \Delta, R\right) \mapsto\left(\rho_{\hbar} \bmod \hbar\right)$ defines a map Quant $(\mathfrak{g}) \rightarrow$ $\operatorname{Lift}(\mathfrak{g})$.

Proposition 0.7. There is a unique map $\operatorname{Lift}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$, taking ρ to $\exp \left(V_{\rho}\right)$. Then the composed map $\operatorname{Quant}(\mathfrak{g}) \rightarrow \operatorname{Lift}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$ coincides with GH : $\operatorname{Quant}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$.

- j - Unicity of lifts

Theorem 0.8. Lift(\mathfrak{g}) consists of only one element.
The unicity part of this theorem uses an elementary argument. The existence part uses the nonemptiness of Quant (\mathfrak{g}), so it relies on the theory of associators and transcendental arguments. In the last part of the paper, we outline an algebraic proof of the existence part of Theorem 0.8 , relying on co-Hochschild cohomology arguments.

- k - Universal versions

If \mathfrak{a} is a finite dimensional Lie bialgebra and \mathfrak{g} is the double of \mathfrak{a} (so $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b}, \mathfrak{b}=\mathfrak{a}^{*}$), then we have the algebra isomorphisms

$$
\mathcal{O}_{G^{*}} \simeq \widehat{S}^{\prime}(\mathfrak{g}) \simeq \widehat{S}^{\prime}(\mathfrak{a}) \bar{\otimes} \widehat{S}^{\prime}(\mathfrak{b})
$$

where \widehat{S}^{\prime} is the graded completion of the symmetric algebra. The last isomorphism is dual to the composed map

$$
S^{\cdot}(\mathfrak{b}) \otimes S^{\cdot}(\mathfrak{a}) \xrightarrow{\text { Sym } \otimes \mathrm{Sym}} U(\mathfrak{a}) \otimes U(\mathfrak{b}) \xrightarrow{m} U(\mathfrak{g})
$$

where Sym is the symmetrization map and m is the multiplication map.
Therefore $\mathcal{O}_{G^{*}}^{\bar{\otimes} n} \simeq \widehat{S}(\mathfrak{a})^{\bar{\otimes} n} \bar{\otimes} \widehat{S}(\mathfrak{b})^{\bar{\otimes} n}$. Now if F and G are any Schur functors, one can define a universal version of the space $F(\mathfrak{a}) \otimes G(\mathfrak{b})$, namely $(F(\mathfrak{a}) \otimes G(\mathfrak{b}))_{\text {univ }}=\underline{\text { LBA }}(G, F)$, where $\underline{\text { LBA }}$ is the prop of Lie bialgebras (see, e.g., $[\mathrm{EE}]$). We then define Hopf algebras $\left(\mathcal{O}_{G^{*}}^{\bar{\otimes} n}\right)_{\text {univ }}=$ $\left(\widehat{S} \cdot(\mathfrak{a})^{\bar{\otimes} n} \bar{\otimes} \widehat{S^{\cdot}}(\mathfrak{b})^{\bar{\otimes} n}\right)_{\text {univ }}$, together with insertion-coproduct morphisms relating them.

Definition 0.9. A universal lift is an element $\rho_{\text {univ }} \in\left(\mathcal{O}_{G^{*}}^{\Phi_{2}}\right)_{\text {univ }}$, satisfying the universal versions of the conditions of Definition 0.4 (with r being the canonical element of $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{a}^{*}$).

We denote by Lift $_{\text {univ }}$ the set of all universal lifts.
When \mathfrak{g} is any finite-dimensional quasitriangular Lie bialgebra, we have algebra morphisms $\left(\mathcal{O}_{G^{*}}^{\bar{\otimes} n}\right)_{\text {univ }} \rightarrow \mathcal{O}_{G^{*}}^{\bar{\otimes} n}$. It follows that for any \mathfrak{g}, we have a map $\operatorname{Lift}_{\text {univ }} \rightarrow \operatorname{Lift}(\mathfrak{g})$.

Theorem 0.10. Lift univ consists of only one element $\rho_{\text {univ }}$.

So the unique lift $\rho_{\mathfrak{g}}$ of a quasitriangular Lie bialgebra \mathfrak{g} is obtained from the element

$$
r \in \mathfrak{g} \otimes \mathfrak{g} \subset \widehat{S^{\prime}}(\mathfrak{g}) \bar{\otimes} \widehat{S^{\prime}}(\mathfrak{g})=\mathcal{O}_{G^{*}}^{\bar{\otimes}^{*}}
$$

by universal formulas. In [Re], Reshetikin computed $\rho_{\mathfrak{g}}$ when $\mathfrak{g}=\mathfrak{s l}_{2}$. His formulas involve the dilogarithm function. We do not know an explicit formula for $\rho_{\text {univ }}$. It might be simpler to express the pairing $\langle-,-\rangle$: $U\left(\mathfrak{g}^{*}\right)^{\otimes 2} \rightarrow \mathbb{K}$, defined by $\langle x, y\rangle=\left\langle\rho_{\mathfrak{g}}, x \otimes y\right\rangle$; this way one avoids the unnatural use of symmetrization maps.

- 1-Plan of the paper

In Section 1, we construct a map $\operatorname{Quant}(\mathfrak{g}) \rightarrow \operatorname{Lift}(\mathfrak{g})$ (Corollary 0.6) and prove the unicity of lifts (Theorem 0.8).
In Section 2, we construct the map Quant $(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$ (Proposition 0.7), and then prove the unicity of braidings (Theorem 0.3). The proof of this theorem uses only a part of the arguments of Section 1 (essentially only the existence of a sequence of maps Quant $(\mathfrak{g}) \rightarrow \operatorname{Lift}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g}))$.
In Section 3, we outline a proof of Theorem 0.8 not depending on the theory of associators.
In Section 4, we sketch a proof of Theorem 0.10.
In Section 5 (appendix), we construct a commutative diagram related to the duality theory of quantized universal enveloping algebras, which we use in the Sections 1 and 2.

§ 1 Lifts of classical r-matrices

Proposition 1.1. There exists a map $\operatorname{Quant}(\mathfrak{g}) \rightarrow \operatorname{Lift}(\mathfrak{g})$.
Proof. Let $\left(U_{\hbar}(\mathfrak{g}), m, \Delta_{\hbar}\right)$ be an element of $\operatorname{Quant}(\mathfrak{g})$. Let $\mathcal{O}_{\hbar} \subset U_{\hbar}(\mathfrak{g})$ be the quantized formal series Hopf (QFSH) subalgebra sitting in $U_{\hbar}(\mathfrak{g})$ (see $\S 0 . \mathrm{e}$). Let \mathfrak{m}_{\hbar} be the augmentation ideal of \mathcal{O}_{\hbar}; then $\mathfrak{m}_{\hbar} \subset \hbar U_{\hbar}(\mathfrak{g})$. In $[\mathrm{EH}]$, we showed that there exists a unique $\rho_{\hbar} \in \mathfrak{m}_{\hbar}^{\bar{\otimes} 2}$ such that $R=$ $\exp \left(\frac{\rho_{\hbar}}{\hbar}\right)$ (this exponential is well-defined because $\left.\left(\frac{\rho_{\hbar}}{\hbar}\right) \in \hbar U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} 2}\right)$. Then the quasitriangular identities of R can be translated as follows: for $a, b \in$ $\mathcal{O}_{\hbar}^{\bar{\otimes} 3}$, we set $\{a, b\}_{\hbar}=\frac{1}{\hbar}[a, b]$. Let $\mathfrak{m}_{\hbar}^{(3)}$ be the augmentation ideal of $\mathcal{O}_{\hbar}^{\bar{\otimes} 3}$: then

$$
\left\{\mathfrak{m}_{\hbar}^{(3)}, \mathfrak{m}_{\hbar}^{(3)}\right\}_{\hbar} \subset \mathfrak{m}_{\hbar}^{(3)},
$$

therefore $\left\{\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{k},\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{l}\right\}_{\hbar} \subset\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{k+l-1}$. Now if $a, b \in\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{2}$, the series

$$
a \star_{\hbar} b=a+b+\frac{1}{2}\{a, b\}_{\hbar}+\cdots
$$

$\left(\mathrm{CBH}\right.$ series, where the Lie bracket is $\left.\{-,-\}_{\hbar}\right)$ is convergent in $\mathcal{O}_{\hbar}^{\bar{\otimes} 3}$. Then we have :

$$
\begin{equation*}
\left(\Delta_{\hbar} \otimes \mathrm{id}\right)\left(\rho_{\hbar}\right)=\rho_{\hbar}^{1,3} \star_{\hbar} \rho_{\hbar}^{2,3}, \quad\left(\operatorname{id} \otimes \Delta_{\hbar}\right)\left(\rho_{\hbar}\right)=\rho_{\hbar}^{1,3} \star_{\hbar} \rho_{\hbar}^{1,2} \tag{1.2}
\end{equation*}
$$

Δ_{\hbar} restricts to a map $\mathcal{O}_{\hbar} \rightarrow \mathcal{O}_{\hbar}^{\bar{\otimes} 2}$, the reduction of which modulo \hbar is the coproduct map Δ of $\mathcal{O}_{G^{*}}$. Define ρ as the reduction modulo \hbar of ρ_{\hbar}, so $\rho \in \mathfrak{m}_{G^{*}}^{\otimes 2}$. Taking the reduction of (1.2) modulo \hbar, we get (γ) of Definition 0.4 .

On the other hand, we have $\Delta_{\hbar}^{\mathrm{op}}=\operatorname{Ad}\left(\exp \left(\frac{\rho_{\hbar}}{\hbar}\right)\right) \circ \Delta$. Set $\operatorname{ad}_{\hbar}(a)(b)=$ $\{a, b\}_{\hbar}$. The automorphisms $\operatorname{Ad}\left(\exp \left(\frac{\rho_{\hbar}}{\hbar}\right)\right)$ and $\exp \left(\operatorname{ad}_{\hbar}\left(\rho_{\hbar}\right)\right)$ coincide. So we get the identity :

$$
\begin{equation*}
\Delta_{\hbar}^{\mathrm{op}}=\exp \left(\operatorname{ad}_{\hbar}\left(\rho_{\hbar}\right)\right) \circ \Delta_{\hbar} \tag{1.3}
\end{equation*}
$$

(equality of two morphisms $\mathcal{O}_{\hbar} \rightarrow \mathcal{O}_{\hbar}^{\bar{\otimes} 2}$). Taking the reduction of (1.3) modulo \hbar, we get (β) of Definition 0.4.

To show that ρ satisfies (δ) of Definition 0.4 , we use the following result (which will be proved in Section 4) :

Lemma 1.2. Let σ be an arbitrary element of $\mathfrak{m}_{\hbar} \bar{\otimes} \mathfrak{m}_{\hbar}$ and $[\sigma]$ be its class in $\left(\mathfrak{m}_{\hbar} /\left(\hbar \mathfrak{m}_{\hbar}+\mathfrak{m}_{\hbar}^{2}\right)\right)^{\bar{\otimes} 2}$. Since $\mathfrak{m}_{\hbar} /\left(\hbar \mathfrak{m}_{\hbar}+\mathfrak{m}_{\hbar}^{2}\right)$ identifies with $\mathfrak{g},[\sigma] \in \mathfrak{g}^{\otimes 2}$. Since $\mathfrak{m}_{\hbar} \subset \hbar U_{\hbar}(\mathfrak{g}), \sigma$ is an element of $\hbar^{2} U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} 2}$. Then $\left(\frac{\sigma}{\hbar^{2}} \bmod \hbar\right)$ is an element of $U(\mathfrak{g})^{\otimes 2}$. We have the following identity in $U(\mathfrak{g})^{\otimes 2}$:

$$
\left(\frac{\sigma}{\hbar^{2}} \bmod \hbar\right)=[\sigma]
$$

Since $\mathfrak{m}_{\hbar} \subset \hbar U_{\hbar}(\mathfrak{g})$, we have $\frac{\rho_{\hbar}}{\hbar} \in \hbar U_{\hbar}(\mathfrak{g})^{\otimes} 2$, so in the right-hand-side of the identity

$$
\frac{R-1}{\hbar}=\frac{\rho}{\hbar^{2}}+\frac{1}{2 \hbar}\left(\frac{\rho}{\hbar}\right)^{2}+\frac{1}{6 \hbar}\left(\frac{\rho}{\hbar}\right)^{3}+\cdots
$$

the terms $\frac{1}{2 \hbar}\left(\frac{\rho}{\hbar}\right)^{2}, \frac{1}{6 \hbar}\left(\frac{\rho}{\hbar}\right)^{3}, \ldots$, all belong to $\hbar U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} 2}$, hence

$$
\begin{equation*}
\left(\frac{R-1}{\hbar} \bmod \hbar\right)=\left(\frac{\rho}{\hbar^{2}} \bmod \hbar\right) \tag{1.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
{[\rho] } & =\left(\frac{\rho}{\hbar^{2}} \bmod \hbar\right) \\
& =\left(\frac{R-1}{\hbar} \bmod \hbar\right)
\end{aligned}
$$

$$
=r \quad(\text { by hypothesis on } R)
$$

Therefore ρ satisfies property (δ) of Definition 0.4.
Now we have proved that the reduction ρ of ρ_{\hbar} modulo \hbar satisfies all the conditions of Definition 0.4.

Proposition 1.3. Lift (\mathfrak{g}) contains at most one element.
Proof. Let us denote by $\mathfrak{m}_{G^{*} \times G^{*}}$ the maximal ideal of $\mathcal{O}_{G^{*} \times G^{*}}$, so $\mathfrak{m}_{G^{*} \times G^{*}}$ $=\mathfrak{m}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}+\mathcal{O}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G *}$. Then we have for any $N \geq 0$,

$$
\mathfrak{m}_{G^{*}}^{\otimes} 22 \mathfrak{m}_{G^{*} \times G^{*}}^{N}=\sum_{\substack{a, b \geq 1 \\ a+b=N}} \mathfrak{m}_{G^{*}}^{a} \bar{\otimes} \mathfrak{m}_{G^{*}}^{b}
$$

Let ρ and ρ^{\prime} be two lifts or r. The classes of ρ and ρ^{\prime} are the same in $\mathfrak{m}_{G^{*}}^{\bar{\otimes} 2} /\left(\mathfrak{m}_{G^{*}}^{\bar{\otimes}} 2 \cap \mathfrak{m}_{G^{*} \times G^{*}}^{2}\right)$ and equal to r, by assumption.

Let N be an integer ≥ 2; assume that we have proved that ρ and ρ^{\prime} are equal modulo $\mathfrak{m}_{G^{*}}^{\bar{\otimes} 2} \cap \mathfrak{m}_{G^{*} \times G^{*}}^{N}$. Let us show that they are equal modulo $\mathfrak{m}_{G^{*}}^{\bar{\otimes} 2} \cap \mathfrak{m}_{G^{*} \times G^{*}}^{N+1}$. Write $\rho^{\prime}=\rho+\sigma ;$ then $\sigma \in \mathfrak{m}_{G^{*}}^{\bar{\otimes} 2} \cap \mathfrak{m}_{G^{*} \times G^{*}}^{N}$. We get

$$
\begin{align*}
(\Delta \otimes \mathrm{id})(\sigma)= & (\rho+\sigma)^{1,3} \star(\rho+\sigma)^{2,3}-\rho^{1,3} \star \rho^{2,3} \\
= & \sigma^{1,3}+\sigma^{2,3} \tag{1.5}\\
& +\sum_{k>1}\left(B_{k}\left(\rho^{1,3}+\sigma^{1,3}, \rho^{2,3}+\sigma^{2,3}\right)-B_{k}\left(\rho^{1,3}, \rho^{2,3}\right)\right)
\end{align*}
$$

where B_{k} is the total degree k homogeneous Lie polynomial of the CBH series.

Lemma 1.4. If $k>1, B_{k}\left(\rho^{1,3}+\sigma^{1,3}, \rho^{2,3}+\sigma^{2,3}\right)-B_{k}\left(\rho^{1,3}, \rho^{2,3}\right)$ is an element of $\mathfrak{m}_{G^{*} \times G^{*}}^{N+1}$.
Proof. This difference may be expressed as a sum of terms of the form

$$
P_{k}\left(\sigma^{i_{1}, 3}, \ldots, \sigma^{i_{l}, 3}, \rho^{i_{l+1}, 3}, \ldots, \rho^{i_{k}, 3}\right),
$$

where P_{k} is a Lie polynomial, homogeneous of degree 1 in each variable $i_{1}, \ldots, i_{k} \in\{1,2\}$, and $l \geq 1$. This expression belongs to $\mathfrak{m}_{G^{*} \times G^{*}}^{l(N-2)+k+1}$. So it belongs to $\mathfrak{m}_{G^{*} \times G^{*}}^{N+k-1} \subset \mathfrak{m}_{G^{*} \times G^{*}}^{N+1}$.

Now $\mathcal{O}_{G^{*}}$ is equipped with a decreasing Hopf filtration $\mathcal{O}_{G^{*}} \supset \mathfrak{m}_{G^{*}} \supset$ $\mathfrak{m}_{G^{*}}^{2} \supset \cdots$: we have

$$
\Delta\left(\mathfrak{m}_{G^{*}}^{k}\right) \subset \sum_{\alpha, \beta \mid \alpha+\beta=k} \mathfrak{m}_{G^{*}}^{\alpha} \bar{\otimes} \mathfrak{m}_{G^{*}}^{\beta} .
$$

Its associated graded is therefore also a Hopf algebra; it is isomorphic to the formal completion $\widehat{S}^{\cdot}(\mathfrak{g})$ of the commutative and cocommutative symmetric
algebra $S(\mathfrak{g})$, the coproduct of which is defined by the condition that the elements of degree 1 are primitive. The tensor square $\mathcal{O}_{G^{*}}^{\bar{\otimes} 2}$ is also filtered: the i-th term of the decreasing filtration is

$$
\operatorname{Fil}^{i}\left(\mathcal{O}_{G^{*}}^{\otimes_{2}}\right)=\sum_{\alpha, \beta \mid \alpha+\beta=i} \mathfrak{m}_{G^{*}}^{\alpha} \bar{\otimes} \mathfrak{m}_{G^{*}}^{\beta} ;
$$

and we have

$$
\operatorname{gr}\left(\mathcal{O}_{G^{*}}^{\bar{ब}^{2}}\right)=\widehat{S^{*}}(\mathfrak{g}) \bar{\otimes} \widehat{S^{\prime}}(\mathfrak{g}) .
$$

Moreover, let $[\sigma]$ be the class of σ in $\operatorname{gr}^{N}\left(\mathcal{O}_{G^{*}}^{\bar{ब}}\right)$; according to identity (1.5) and Lemma 1.4, we have

$$
(\Delta \otimes \mathrm{id})([\sigma])=[\sigma]^{1,3}+[\sigma]^{2,3}, \quad(\mathrm{id} \otimes \Delta)([\sigma])=[\sigma]^{1,3}+[\sigma]^{1,2} .
$$

The first identity implies that $[\sigma] \in \mathfrak{g} \otimes S^{N-1}(\mathfrak{g})$, the second identity implies that $[\sigma] \in S^{N-1}(\mathfrak{g}) \otimes \mathfrak{g}$; since $\left(\mathfrak{g} \otimes S^{N-1}(\mathfrak{g})\right) \cap\left(S^{N-1}(\mathfrak{g}) \otimes \mathfrak{g}\right)=\{0\}$, we get $[\sigma]=0$, therefore $\sigma \in \mathfrak{m}_{G^{*} \times G^{*}}^{N+1}$. So σ belongs to the intersection of all $\mathfrak{m}_{G^{*} \times G^{*}}^{N}, N \geq 0$, thus $\sigma=0$. This proves that $\rho=\rho^{\prime}$.

Corollary 1.5. If (\mathfrak{g}, r) is a quasitriangular Lie bialgebra, there exists a unique element $\rho \in \operatorname{Lift}(\mathfrak{g})$.

Proof. The unicity follows from Proposition 1.3, and the existence follows from Proposition 1.1, and from the fact that Quant (\mathfrak{g}) is nonempty: in [EK], Etingof and Kazhdan constructed a map Assoc $(\mathbb{K}) \rightarrow$ Quant (\mathfrak{g}), where $\operatorname{Assoc}(\mathbb{K})$ is the set of associators over the ground field \mathbb{K}; this set is introduced by Drinfeld in $[\mathrm{Dr}]$, where it is also shown that $\operatorname{Assoc}(\mathbb{K})$ is nonempty.

Remark 1.6. Corollary 1.5 relies on the existence of associators, so it actually relies on transcendental arguments. Another proof of this Corollarary will be given in Section 3; this proof is algebraic and is based on the further use of co-Hochschild cohomology groups.

§ 2 Quasitriangular braidings

In this section, we construct the map Quant $(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$ (Subsection 2.a). We then prove that $\mathcal{R}_{\mathrm{WX}} \in \operatorname{Braid}(\mathfrak{g})$ (Subsection 2.b). In Subsection 2.c, we prove that $\operatorname{Braid}(\mathfrak{g})$ contains at most one element. So the image of any element of $\operatorname{Quant}(\mathfrak{g})$ in $\operatorname{Braid}(\mathfrak{g})$ coincides with $\mathcal{R}_{\mathrm{WX}}$ (Theorem 0.3).

- a - The map Quant $(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$ (proof of Proposition 0.7)

Let us prove the map $\rho \mapsto \exp \left(V_{\rho}\right)$ actually maps $\operatorname{Lift}(\mathfrak{g}) \rightarrow \operatorname{Braid}(\mathfrak{g})$. If $\rho \in \operatorname{Lift}(\mathfrak{g})$, the fact that ρ satisfies axioms $(\alpha),(\beta)$ and (γ) of Definition 0.4 respectively implies that $\exp \left(V_{\rho}\right)$ satisies axioms $(\alpha),(\beta)$ and (γ) of Definition 0.1. Let us now prove that the fact that ρ satisfies axiom (δ) of Definition 0.4 implies that $\exp \left(V_{\rho}\right)$ satisfies axiom (δ) of Definition 0.1.

By definition, ρ is an element of $\mathfrak{m}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G^{*}}$. We have $\mathfrak{m}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G^{*}} \subset$ $\mathcal{O}_{G^{*}} \bar{\otimes} \mathcal{O}_{G^{*}}=\mathcal{O}_{G^{*} \times G^{*}} ;$ actually, we have $\mathfrak{m}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G^{*}} \subset \mathfrak{m}_{G^{*} \times G^{*}}^{2}$, so $\rho \in$ $\mathfrak{m}_{G^{*} \times G^{*}}^{2}$. Since we have $\left\{\mathfrak{m}_{G^{*} \times G^{*}}^{2}, \mathfrak{m}_{G^{*} \times G^{*}}\right\} \subset \mathfrak{m}_{G^{*} \times G^{*}}^{2}$, the map

$$
V_{\rho}: \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}
$$

induces the zero map. Therefore, so do all the $\left(V_{\rho}\right)^{k}, k \geq 1$. So $\exp \left(V_{\rho}\right)$ induces the identity map of $\mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}$. Let us now compute the map

$$
\left[\exp \left(V_{\rho}\right)-\mathrm{id}\right]: \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}
$$

using the identifications $\mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}=S^{2}(\mathfrak{g}) \oplus(\mathfrak{g} \otimes \mathfrak{g}) \oplus S^{2}(\mathfrak{g})$ and $\mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}=\mathfrak{g} \oplus \mathfrak{g}$. We have

$$
(\epsilon \otimes \mathrm{id}) \circ\left(\exp \left(V_{\rho}\right)-\mathrm{id}\right)=(\mathrm{id} \otimes \epsilon) \circ\left(\exp \left(V_{\rho}\right)-\mathrm{id}\right)=0
$$

(identity of maps $\mathcal{O}_{G^{*} \times G^{*}} \rightarrow \mathcal{O}_{G^{*}}$), because $\left\{\mathfrak{m}_{G^{*}}, \mathcal{O}_{G^{*}}\right\} \subset \mathfrak{m}_{G^{*}}$. The class of $\operatorname{Ker}(\epsilon \otimes \mathrm{id}) \cap \operatorname{Ker}(\mathrm{id} \otimes \epsilon) \cap \mathfrak{m}_{G^{*} \times G^{*}}^{2}$ in $\mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}$ is the subspace $(\mathfrak{g} \otimes \mathfrak{g}) \subset S^{2}(\mathfrak{g}) \oplus(\mathfrak{g} \otimes \mathfrak{g}) \oplus S^{2}(\mathfrak{g})$.

On the other hand, if $f \in \mathfrak{m}_{G^{*} \times G^{*}}$, and $k \geq 2$, then $\left(V_{\rho}\right)^{k}(f) \in \mathfrak{m}_{G^{*} \times G^{*}}^{3}$. So the class of $\left(\exp \left(V_{\rho}\right)-\mathrm{id}\right)(f)$ in $\mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}$ coincides with that of $V_{\rho}(f)$. So we now compute the map

$$
\left[V_{\rho}\right]: \mathfrak{g} \oplus \mathfrak{g} \rightarrow(\mathfrak{g} \otimes \mathfrak{g})
$$

Let $x_{1}, x_{2} \in \mathfrak{g}$ and let $f_{1}, f_{2} \in \mathfrak{m}_{G^{*}}$ be such that their classes in $\mathfrak{m}_{G^{*}} / \mathfrak{m}_{G^{*}}^{2}=$ \mathfrak{g} are x_{1}, x_{2}. Let us set $f=f_{1} \otimes 1+1 \otimes f_{2}$, and let us compute $V_{\rho}(f)$. Set $\rho=\sum_{\alpha} \rho_{\alpha}^{\prime} \otimes \rho_{\alpha}^{\prime \prime}$, with $\rho_{\alpha}^{\prime}, \rho_{\alpha}^{\prime \prime} \in \mathfrak{m}_{G^{*}}$. Then

$$
V_{\rho}(f)=\sum_{\alpha}\left\{\rho_{\alpha}^{\prime}, f_{1}\right\} \otimes \rho_{\alpha}^{\prime \prime}+\rho_{\alpha}^{\prime} \otimes\left\{\rho_{\alpha}^{\prime \prime}, f_{2}\right\}
$$

Now we have a commutative diagram

where the vertical arrows correspond to the projection $\mathfrak{m}_{G^{*}} \rightarrow \mathfrak{m}_{G^{*}} / \mathfrak{m}_{G^{*}}^{2}=$ \mathfrak{g}. So the class of $V_{\rho}(f)$ in $\mathfrak{g} \otimes \mathfrak{g}$ is $\left[r, x_{1} \otimes 1+1 \otimes x_{2}\right]$. Therefore $\left[\exp \left(V_{\rho}\right)-\right.$ id] : $\mathfrak{g} \oplus \mathfrak{g} \rightarrow(\mathfrak{g} \otimes \mathfrak{g})$ is the map

$$
\left(x_{1}, x_{2}\right) \mapsto\left(0,\left[r, x_{1} \otimes 1+1 \otimes x_{2}\right], 0\right),
$$

which proves that $\exp \left(V_{\rho}\right)$ satisfies condition (δ) of Definition 0.1 and so belongs to $\operatorname{Braid}(\mathfrak{g})$.

- b - Proof of $\mathcal{R}_{\mathrm{WX}} \in \operatorname{Braid}(\mathfrak{g})$

In [WX], it is proved that $\mathcal{R}_{\mathrm{WX}}$ satisfies conditions $(\alpha),(\beta)$ and (γ) of Definition 0.1. In [GH2], it is proved that it satisfies the first part of (δ) of this definition, namely $\mathcal{R}_{\mathrm{WX}}$ induces the identity endomorphism of $\mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2}$. Then $\mathcal{R}_{\mathrm{Wx}}$ - id induces a map $\mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \rightarrow$ $\mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}$, which we now compute.

Identify G^{*} with \mathfrak{g}^{*} using the exponential map. We get, from (0.1), the expansion at second order of the map $\widetilde{\mathcal{R}}_{\mathrm{WX}}$:

$$
\begin{aligned}
\mathfrak{g}^{*} & \oplus \mathfrak{g}^{*} \\
\rightarrow \mathfrak{g}^{*} & \oplus \mathfrak{g}^{*} \\
(\xi, \eta) & \mapsto(\xi, \eta)+\left(\operatorname{ad}^{*}\left(r_{+}(\eta)\right)(\xi), \operatorname{ad}^{*}\left(r_{-}(\xi)\right)(\eta)\right) .
\end{aligned}
$$

View $(x, y) \in \mathfrak{g} \oplus \mathfrak{g}$ as a function of $\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$, taking (ξ, η) to $\langle\xi, x\rangle+\langle\eta, y\rangle$. Then $\mathcal{R}_{\mathrm{WX}}(x, y)$ takes (ξ, η) to

$$
\begin{aligned}
\langle\xi & \left.+\operatorname{ad}^{*}\left(r_{+}(\eta)\right)(\xi), x\right\rangle+\left\langle\eta+\operatorname{ad}^{*}\left(r_{-}(\xi)\right)(\eta), y\right\rangle \\
& =\langle\xi, x\rangle+\langle\eta, y\rangle+\left\langle\xi,\left[r_{+}(\eta), x\right]\right\rangle+\left\langle\eta,\left[r_{-}(\xi), y\right]\right\rangle \\
& =\langle\xi, x\rangle+\langle\eta, y\rangle+\sum_{i}\left\langle a_{i}, \xi\right\rangle\left\langle\eta,\left[b_{i}, y\right]\right\rangle+\sum_{i}\left\langle b_{i}, \eta\right\rangle\left\langle\xi,\left[a_{i}, x\right]\right\rangle \\
& =\langle\xi, x\rangle+\langle\eta, y\rangle+\sum_{i}\left\langle\xi \otimes \eta,\left[a_{i}, x\right] \otimes b_{i}+a_{i} \otimes\left[b_{i}, y\right]\right\rangle+(\text { order } 3 \text { in }(\xi, \eta))
\end{aligned}
$$

where we set $r=\sum_{i} a_{i} \otimes b_{i}$, so that $r_{+}(\xi)=\sum_{i}\left\langle b_{i}, \xi\right\rangle a_{i}$, and $r_{-}(\xi)=$ $\sum_{i}\left\langle a_{i}, \xi\right\rangle b_{i}$. Therefore

$$
\begin{aligned}
{\left[\mathcal{R}_{\mathrm{WX}}-\mathrm{id}\right]: } & \mathfrak{g} \oplus \mathfrak{g}
\end{aligned} \rightarrow \mathfrak{g} \otimes \mathfrak{g}, ~(x, y) \mapsto[r, x \otimes 1+1 \otimes y] .
$$

Then $\mathcal{R}_{\mathrm{WX}}$ satisfies all the conditions of Definition 0.1.

- c - Unicity of braidings

Let \mathcal{R} and \mathcal{R}^{\prime} be two elements of $\operatorname{Braid}(\mathfrak{g})$. We know that the maps [$\mathcal{R}-\mathrm{id}]$ and $\left[\mathcal{R}^{\prime}-\mathrm{id}\right]: \mathfrak{m}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{2} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}}^{2} / \mathfrak{m}_{G^{*} \times G^{*}}^{3}$ coincide, so $\left(\mathcal{R}-\mathcal{R}^{\prime}\right)\left(\mathfrak{m}_{G^{*} \times G^{*}}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{3}$. Let us prove by induction over $k \geq 3$ that

$$
\begin{equation*}
\left(\mathcal{R}-\mathcal{R}^{\prime}\right)\left(\mathfrak{m}_{G^{*} \times G^{*}}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{k} . \tag{2.6}
\end{equation*}
$$

As we have seen, (2.6) holds for $k=3$. Assume that it holds for some k and let us prove it for $k+1$. Let us set $\mathcal{S}=\mathcal{R}-\mathcal{R}^{\prime}$. Then \mathcal{S} is a linear $\operatorname{map} \mathcal{O}_{G^{*} \times G^{*}} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}}^{k}$. Moreover, we have for $f, g \in \mathcal{O}_{G^{*} \times G^{*}}$

$$
\begin{equation*}
\mathcal{S}(f g)=\mathcal{R}(f) \mathcal{S}(g)+\mathcal{S}(f) \mathcal{R}^{\prime}(g) \tag{2.7}
\end{equation*}
$$

Identity (2.7) allows to show by induction:
Lemma 2.1. For any $a \geq 1$, we have $\mathcal{S}\left(\mathfrak{m}_{G^{*} \times G^{*}}^{a}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{a+k-1}$.
Proof. This holds when $a=1$ due to (2.6).
Assume that we proved $\mathcal{S}\left(\mathfrak{m}_{G^{*} \times G^{*}}^{a}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{a+k-1}$; then for $f \in \mathfrak{m}_{G^{*} \times G^{*}}^{a}$ and $g \in \mathfrak{m}_{G^{*} \times G^{*}}$,

$$
\left.\begin{array}{rl}
\mathcal{S}(f g)= & \mathcal{R}(f) \mathcal{S}(g)
\end{array}\right) \mathcal{S}(f) \mathcal{R}^{\prime}(g) \in 1
$$

Therefore $\mathcal{S}\left(\mathfrak{m}_{G^{*} \times G^{*}}^{a+1}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{a+k}$.
Let us now use the fact that $\mathcal{O}_{G^{*}}$ is a topological Hopf algebra, equipped with a decreasing Hopf filtration $\mathcal{O}_{G^{*}} \supset \mathfrak{m}_{G^{*}} \supset \mathfrak{m}_{G^{*}}^{2} \supset \cdots$. The completion of the associated graded of $\mathcal{O}_{G^{*}}$ is a commutative and cocommutative Hopf algebra

$$
\widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*}}\right)=\widehat{\oplus}_{i} \operatorname{gr}^{i}\left(\mathcal{O}_{G^{*}}\right)=\widehat{S}(\mathfrak{g})
$$

$\mathcal{O}_{G^{*} \times G^{*}}$ is also filtered and $\widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*} \times G^{*}}\right)=\widehat{S}(\mathfrak{g})^{\bar{\otimes} 2}$. Then Lemma 2.1, together with identity (2.7), implies:

Lemma 2.2. Define $\operatorname{gr}(\mathcal{S}): \widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*}}^{\bar{\otimes} 2}\right) \rightarrow \widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*}}^{\bar{\otimes} 2}\right)$ as the degree k map such that $\operatorname{gr}(\mathcal{S}): \mathfrak{m}_{G^{*} \times G^{*}}^{a} / \mathfrak{m}_{G^{*} \times G^{*}}^{a+1} \rightarrow \mathfrak{m}_{G^{*} \times G^{*}}^{a+k-1} / \mathfrak{m}_{G^{*} \times G^{*}}^{a+k}$ is induced by \mathcal{S} for $a \geq 0$. Then $\operatorname{gr}(\mathcal{S})$ is a derivation of degree $k-1$ of $\operatorname{gr}\left(\mathcal{O}_{G^{*} \times G^{*}}\right)$.

Comparing the analogues of the identities (γ) for \mathcal{R} and \mathcal{R}^{\prime}, we get :

$$
\left(\mathcal{S}^{1,3} \circ \mathcal{R}^{2,3}+\mathcal{R}^{\prime 1,3} \circ \mathcal{S}^{2,3}\right) \circ\left(\Delta_{\mathcal{O}} \otimes \mathrm{id}\right)=\left(\Delta_{\mathcal{O}} \otimes \mathrm{id}\right) \circ \mathcal{S},
$$

and

$$
\left(\mathcal{S}^{1,3} \circ \mathcal{R}^{1,2}+\mathcal{R}^{\prime 1,3} \circ \mathcal{S}^{1,2}\right) \circ\left(\mathrm{id} \otimes \Delta_{\mathcal{O}}\right)=\left(\mathrm{id} \otimes \Delta_{\mathcal{O}}\right) \circ \mathcal{S}
$$

Both sides of each identity are algebra morphisms $\mathcal{O}_{G^{*} \times G^{*}} \rightarrow \mathcal{O}_{G^{*} \times G^{*} \times G^{*}}$ taking $\mathfrak{m}_{G^{*} \times G^{*}}^{a}$ to $\mathfrak{m}_{G^{*} \times G^{*} \times G^{*}}^{a+k-1}$. The associated graded morphisms are degree $k-1$ algebra morphisms $\widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*} \times G^{*}}\right) \rightarrow \widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*} \times G^{*} \times G^{*}}\right)$. The corresponding identities between these morphisms are

$$
\left(\operatorname{gr}(\mathcal{S})^{1,3}+\operatorname{gr}(\mathcal{S})^{2,3}\right) \circ\left(\Delta_{0} \otimes \operatorname{id}\right)=\left(\Delta_{0} \otimes \operatorname{id}\right) \circ \operatorname{gr}(\mathcal{S}),
$$

and
$\left(\operatorname{gr}(\mathcal{S})^{1,3}+\operatorname{gr}(\mathcal{S})^{1,2}\right) \circ\left(\operatorname{id} \otimes \Delta_{0}\right)=\left(\operatorname{id} \otimes \Delta_{0}\right) \circ \operatorname{gr}(\mathcal{S})$,
where $\Delta_{0}: \widehat{S}(\mathfrak{g}) \rightarrow \widehat{S}(\mathfrak{g}) \bar{\otimes} \widehat{S}(\mathfrak{g})$ is the coproduct map of $\operatorname{gr}(\mathcal{S})=\widehat{\operatorname{gr}}\left(\mathcal{O}_{G^{*}}\right)$. These identities imply that the image of $\operatorname{gr}(\mathcal{S})$ is contained in $\operatorname{Prim}(\widehat{S}(\mathfrak{g})) \otimes$ $\operatorname{Prim}(\widehat{S}(\mathfrak{g}))$. Since $\operatorname{Prim}(\widehat{S}(\mathfrak{g}))=S^{1}(\mathfrak{g})=\operatorname{gr}^{1}\left(\mathcal{O}_{G^{*}}\right)$, the image of $\operatorname{gr}(\mathcal{S})$ is therefore contained in $\operatorname{gr}^{1}\left(\mathcal{O}_{G^{*}}\right)^{\otimes 2} \subset \operatorname{gr}^{2}\left(\mathcal{O}_{G^{*} \times G^{*}}\right)$. Since the image of $\operatorname{gr}(\mathcal{S})$ is also contained in $\widehat{\otimes}_{i \geq 3} \operatorname{gr}^{i}\left(\mathcal{O}_{G^{*} \times G^{*}}\right)$, we get $\operatorname{gr}(\mathcal{S})=0$. It follows that $\mathcal{S}\left(\mathfrak{m}_{G^{*} \times G^{*}}\right) \subset \mathfrak{m}_{G^{*} \times G^{*}}^{k+1}$. This proves the induction step of (2.6). Therefore $\mathcal{S}\left(\mathfrak{m}_{G^{*} \times G^{*}}\right) \subset \cap_{k \geq 0} \mathfrak{m}_{G^{*} \times G^{*}}^{k}=0$. Since \mathcal{S} is a derivation, we get $\mathcal{S}=0$. Therefore $\mathcal{R}=\mathcal{R}^{\prime}$. This proves that $\operatorname{Braid}(\mathfrak{g})$ contains at most one element.

§ 3 Cohomological construction of ρ

Let (\mathfrak{g}, r) be a finite-dimensional quasitriangular Lie bialgebra. The purpose of this section is to construct the unique element ρ of $\operatorname{Lift}(\mathfrak{g})$ by cohomological arguments, thus avoiding the use of associators. Our main result is:

Theorem 3.1. Lift (\mathfrak{g}) contains an element ρ.
This result will be proved in Subsection 3.c. In Subsection 3.a, we introduce variants and truncations of the sets $\operatorname{Lift}(\mathfrak{g})$ and $\operatorname{Braid}(\mathfrak{g})$. Subsection 3.b contains the cohomological results allowing to construct ρ by successive approximations.

- a - Variants of the sets $\operatorname{Braid}(\mathfrak{g})$ and $\operatorname{Lift}(\mathfrak{g})$

We denote by $\operatorname{Braid}^{\prime}(\mathfrak{g})$ the set of all Poisson automorphisms of $\mathcal{O}_{G^{*} \times G^{*}}$, satisfying conditions $(\alpha),(\gamma)$ and (δ) of Definition 0.1 . We denote by Lift ${ }^{\prime}(\mathfrak{g})$ the set of all elements ρ of $\mathcal{O}_{G^{*} \times G^{*}}$, satisfying conditions $(\alpha),(\gamma)$ and (δ) of Definition 0.4. The map $\rho \mapsto \exp \left(V_{\rho}\right)$ then restrict to a map $\operatorname{Lift}^{\prime}(\mathfrak{g}) \rightarrow \operatorname{Braid}^{\prime}(\mathfrak{g})$.

If n is an integer, we define $\operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})\left(\right.$ resp., $\left.\operatorname{Braid}_{\leq n}(\mathfrak{g})\right)$ as the set of all Poisson automorphisms of $\mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n}$, satisfying conditions (α), (γ) and $(\delta)(\operatorname{resp} .(\alpha),(\beta),(\gamma)$ and $(\delta))$ of Definition 0.1 , where $\mathcal{O}_{\left(G^{*}\right)^{k}}$ is replaced by $\mathcal{O}_{\left(G^{*}\right)^{k}} / \mathfrak{m}_{\left(G^{*}\right)^{k}}^{n}, k=1,2,3$.

Similarly, we define $\operatorname{Lift}^{\prime} \leq n(\mathfrak{g})\left(\right.$ resp., $\left.\operatorname{Lift}_{\leq n}(\mathfrak{g})\right)$ as the set of all lifts $\rho \in \mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n}$, satisfying conditions $(\alpha),(\gamma)$ and (δ) (resp. $(\alpha),(\beta)$, (γ) and $(\delta))$ of Definition 0.4, where $\mathcal{O}_{\left(G^{*}\right)^{k}}$ is replaced by $\mathcal{O}_{\left(G^{*}\right)^{k}} / \mathfrak{m}_{\left(G^{*}\right)^{k}}^{n}$, $k=1,2,3$. Then $\rho \mapsto \exp \left(V_{\rho}\right)$ defines a map $\operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g}) \rightarrow \operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})$.

Lemma 3.2. We have:

1. The natural inclusions $\operatorname{Lift}(\mathfrak{g}) \subset \operatorname{Lift}^{\prime}(\mathfrak{g}), \quad \operatorname{Braid}(\mathfrak{g}) \subset \operatorname{Braid}^{\prime}(\mathfrak{g})$, $\operatorname{Lift}_{\leq n}(\mathfrak{g}) \subset \operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g})$ and $\operatorname{Braid}_{\leq n}(\mathfrak{g}) \subset \operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})$ are all equalities.
2. The set $\operatorname{Braid}_{\leq n}(\mathfrak{g})$ consists of only one element, $\overline{\mathcal{R}}_{\mathrm{WX}}^{(n)}$, which is the automorphism of $\mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n}$ induced by the Weinstein-Xu automorphism.

Proof. One can repeat the proof of the unicity part of Theorem 0.3 to show that the sets $\operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g}), \operatorname{Braid}_{\leq n}(\mathfrak{g})$ and $\operatorname{Braid}^{\prime}(\mathfrak{g})$ all contain at most one element. Since $\mathcal{R}_{\mathrm{WX}}$ is an element of $\operatorname{Braid}(\mathfrak{g})$, we get $\operatorname{Braid}(\mathfrak{g})=\operatorname{Braid}^{\prime}(\mathfrak{g})=\left\{\mathcal{R}_{\mathrm{WX}}\right\}$. In the same way, the automorphism $\overline{\mathcal{R}}_{\mathrm{WX}}^{(n)}$ of $\mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n}$ induced by $\mathcal{R}_{\mathrm{WX}}$ is an element of $\operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})$ and of $\operatorname{Braid}_{\leq n}(\mathfrak{g})$, so $\operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})=\operatorname{Braid}_{\leq n}(\mathfrak{g})=\left\{\overline{\mathcal{R}}_{\text {WX }}^{(n)}\right\}$. This proves part 2 and the equalities beween the sets of braidings of part 1 .
Now $\operatorname{Lift}(\mathfrak{g})$ is nothing but the preimage of $\operatorname{Braid}(\mathfrak{g})$ by the map

$$
\begin{aligned}
\exp : \operatorname{Lift}^{\prime}(\mathfrak{g}) & \rightarrow \operatorname{Braid}^{\prime}(\mathfrak{g}) \\
\rho & \mapsto \exp \left(V_{\rho}\right) ;
\end{aligned}
$$

similarly, $\operatorname{Lift}_{\leq n}(\mathfrak{g})$ is the preimage of $\operatorname{Braid}_{\leq n}(\mathfrak{g})$ by the map exp : $\operatorname{Lift}^{\prime} \leq n(\mathfrak{g})$ $\rightarrow \operatorname{Braid}_{\leq n}^{\prime}(\mathfrak{g})$. So we get $\operatorname{Lift}(\mathfrak{g})=\operatorname{Lift}^{\prime}(\mathfrak{g})$ and $\operatorname{Lift}_{\leq n}(\mathfrak{g})=\operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g})$.

- b - A map $\operatorname{Lift}^{\prime}{ }_{\leq n}(\mathfrak{g}) \rightarrow \operatorname{Lift}_{\leq n+1}(\mathfrak{g})$

We have canonical projection maps $\operatorname{Lift}^{\prime} \leq n(\mathfrak{g}) \xrightarrow{\pi_{n-1}} \operatorname{Lift}_{\leq n-1}^{\prime}(\mathfrak{g}) \rightarrow \cdots$. Then

$$
\operatorname{Lift}^{\prime}(\mathfrak{g})={\underset{\overleftarrow{n}}{ }}_{\lim _{n}}\left(\operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g})\right)
$$

To construct an element of $\operatorname{Lift}^{\prime}(\mathfrak{g})$, we will therefore construct a sequence of maps

$$
\lambda_{n}: \operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g}) \rightarrow \operatorname{Lift}^{\prime} \leq n+1(\mathfrak{g}), n \geq 3
$$

such that $\pi_{n} \circ \lambda_{n}=\mathrm{id}$.

Let $\rho_{n} \in \mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n}$ be an element of $\operatorname{Lift}^{\prime} \leq n(\mathfrak{g})$. We have then

$$
(\epsilon \otimes \mathrm{id})\left(\rho_{n}\right)=(\mathrm{id} \otimes \epsilon)\left(\rho_{n}\right)=0
$$

$$
\begin{gathered}
(\Delta \otimes \mathrm{id})\left(\rho_{n}\right)=\rho_{n}^{1,3} \star \rho_{n}^{2,3},(\mathrm{id} \otimes \Delta)\left(\rho_{n}\right)=\rho_{n}^{1,3} \star \rho_{n}^{1,2} \\
{\left[\rho_{n}\right]=r .}
\end{gathered}
$$

Let us take a lift $\widetilde{\rho}_{n} \in \mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1}$ of ρ_{n} such that $(\epsilon \otimes \mathrm{id})\left(\widetilde{\rho}_{n}\right)=$ $(\mathrm{id} \otimes \epsilon)\left(\widetilde{\rho}_{n}\right)=0$. Set

$$
\begin{align*}
& \alpha=(\Delta \otimes \mathrm{id})\left(\widetilde{\rho}_{n}\right)-\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3} \\
& \beta=(\operatorname{id} \otimes \Delta)\left(\widetilde{\rho}_{n}\right)=\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2} \tag{3.9}
\end{align*}
$$

Then $\alpha, \beta \in \mathfrak{m}_{\left(\mathcal{O}^{*}\right)^{3}}^{n} / \mathfrak{m}_{\left(\mathcal{O}^{*}\right)^{3}}^{n+1}$. Moreover

$$
\begin{aligned}
& (\epsilon \otimes \mathrm{id} \otimes \mathrm{id})(\alpha)=(\mathrm{id} \otimes \epsilon \otimes \mathrm{id})(\alpha)=(\mathrm{id} \otimes \mathrm{id} \otimes \epsilon)(\alpha)=0 \\
& (\epsilon \otimes \mathrm{id} \otimes \mathrm{id})(\beta)=(\mathrm{id} \otimes \epsilon \otimes \mathrm{id})(\beta)=(\mathrm{id} \otimes \mathrm{id} \otimes \epsilon)(\beta)=0
\end{aligned}
$$

Let σ be an element of $\mathfrak{m}_{G^{*} \times G^{*}}^{n} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1}$. Set $\rho_{n+1}=\widetilde{\rho}_{n}+\sigma$. Then ρ_{n+1} belongs to $\operatorname{Lift}^{\prime}{ }_{\leq n+1}(\mathfrak{g})$ if and only if:

$$
\begin{gather*}
(\epsilon \otimes \mathrm{id})(\sigma)=(\mathrm{id} \otimes \epsilon)(\sigma)=0 \tag{3.10}\\
(\mathrm{~d} \otimes \mathrm{id})(\sigma)=-\alpha,(\mathrm{id} \otimes \mathrm{~d})(\sigma)=-\beta \tag{3.11}
\end{gather*}
$$

Here, we identify $\mathfrak{m}_{G^{*} \times G^{*}}^{n} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1}$ with $S^{n}(\mathfrak{g} \oplus \mathfrak{g})$ and $\mathfrak{m}_{\left(\mathcal{O}^{*}\right)^{3}}^{n} / \mathfrak{m}_{\left(\mathcal{O}^{*}\right)^{3}}^{n+1}$ with $S^{n}(\mathfrak{g} \oplus \mathfrak{g} \oplus \mathfrak{g})$. Then the map d : $S^{\cdot}(\mathfrak{g}) \rightarrow S^{\cdot}(\mathfrak{g} \oplus \mathfrak{g})$ is the Hochschild coboundary map, taking f to $\Delta_{0}(f)-f \otimes 1-1 \otimes f\left(\Delta_{0}\right.$ is the cocommutative coproduct of $S \cdot(\mathfrak{g})$). Identities (3.10) and (3.11) follow from the identities

$$
\begin{equation*}
f \star(h+g)=f \star h+g, \quad(f+g) \star h=f \star h+g \tag{3.12}
\end{equation*}
$$

when $f, h \in \mathfrak{m}_{\left(G^{*}\right)^{k}}^{2} / \mathfrak{m}_{\left(G^{*}\right)^{k}}^{n+1}$ and $g \in \mathfrak{m}_{\left(G^{*}\right)^{k}}^{n} / \mathfrak{m}_{\left(G^{*}\right)^{k}}^{n+1}$.
Let us now recall some results of co-Hochschild cohomology. Let $\mathrm{d}^{(2)}$: $S \cdot(\mathfrak{g} \oplus \mathfrak{g}) \rightarrow S^{\cdot}(\mathfrak{g} \oplus \mathfrak{g} \oplus \mathfrak{g})$ be defined by $\mathrm{d}^{(2)}(f)=(\mathrm{d} \otimes \mathrm{id})(f)-(\mathrm{id} \otimes \mathrm{d})(f)$ (we identify $S \cdot\left(\mathfrak{g}^{\oplus k}\right)$ with $\left.S \cdot(\mathfrak{g})^{\otimes k}\right)$. Then $\mathrm{d}^{(2)} \circ \mathrm{d}=0$. The cohomology group $H_{\text {co-Hoch }}^{1}=\operatorname{Ker}\left(\mathrm{d}^{(2)}\right) / \operatorname{Im}(\mathrm{d})$ identifies with $\wedge^{2}(\mathfrak{g})$. The canonical map $\operatorname{Ker}\left(\mathrm{d}^{(2)}\right) \rightarrow \wedge^{2}(\mathfrak{g})$ is given by the antisymmetrization $f \mapsto f-f^{2,1}$. The 0 -th cohomology group $H_{\text {co-Hoch }}^{0}=\operatorname{Ker}(\mathrm{d})$ is equal to \mathfrak{g}. We then prove:

Lemma 3.3. There exists a solution $\sigma \in \mathfrak{m}_{G^{*} \times G^{*}}^{n} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1}$ of equations (3.10) and (3.11) if and only if α, β satisfy the equations:

$$
\begin{align*}
& (\mathrm{id} \otimes \mathrm{id} \otimes \mathrm{~d})(\alpha)=(\mathrm{d} \otimes \mathrm{id} \otimes \mathrm{id})(\beta) \tag{3.13}\\
& \quad\left(\mathrm{d}^{(2)} \otimes \mathrm{id}\right)(\alpha)=\left(\mathrm{id} \otimes \mathrm{~d}^{(2)}(\beta)=0\right. \tag{3.14}\\
& \alpha^{1,2,3}=\alpha^{2,1,3}, \quad \beta^{1,2,3}=\beta^{1,3,2} \tag{3.15}
\end{align*}
$$

If these conditions are satisfied, then the solution is unique.
Proof. Assume that σ exists. Then both sides of (3.13) are equal to $-(\mathrm{d} \otimes \mathrm{d})(\sigma)$, so we have (3.13). (3.14) follows from $\mathrm{d}^{(2)} \circ \mathrm{d}=0$ and (3.15) follows from the fact that the image of $\mathrm{d}: S \cdot(\mathfrak{g}) \rightarrow S \cdot(\mathfrak{g} \oplus \mathfrak{g})$ is contained in the subspace of invariants under the permutation of both summands of $\mathfrak{g} \oplus \mathfrak{g}$. So (3.13), (3.14) and (3.15) are satisfied.
Assume now that these identities are satisfied. The equalities $\left(\mathrm{d}^{(2)} \otimes\right.$ id) $(\alpha)=0$ and $\alpha^{1,2,3}=\alpha^{2,1,3}$ imply that α corresponds to zero in $H_{\text {co-Hoch }}^{1} \otimes$ $S^{n-2}(\mathfrak{g})=\wedge^{2}(\mathfrak{g}) \otimes S^{n-2}(\mathfrak{g})$, hence there exists $\sigma^{\prime} \in S^{n}(\mathfrak{g} \oplus \mathfrak{g})$, such that $(\mathrm{d} \otimes \mathrm{id})\left(\sigma^{\prime}\right)=-\alpha$. In the same way, there exists $\sigma^{\prime \prime} \in S^{n}(\mathfrak{g} \oplus \mathfrak{g})$, such that $(\mathrm{id} \otimes \mathrm{d})\left(\sigma^{\prime \prime}\right)=-\beta . \quad \sigma^{\prime}$ is well-defined only up to addition of an element of $\mathfrak{g} \otimes S^{n-1}(\mathfrak{g})$, and $\sigma^{\prime \prime}$ is well-defined up to addition of an element of $S^{n-1}(\mathfrak{g}) \otimes \mathfrak{g}$. Now (3.13) implies that $(\mathrm{d} \otimes \mathrm{d})\left(\sigma^{\prime}-\sigma^{\prime \prime}\right)=0$. Since $\operatorname{Ker}(\mathrm{d})=\mathfrak{g}$, we get $\sigma^{\prime}-\sigma^{\prime \prime} \in \mathfrak{g} \otimes S^{n-1}(\mathfrak{g})+S^{n-1}(\mathfrak{g}) \otimes \mathfrak{g}$. Let $\sigma^{\prime}-\sigma^{\prime \prime}=\sigma_{0}^{\prime}+\sigma_{0}^{\prime \prime}$, $\sigma_{0}^{\prime} \in \mathfrak{g} \otimes S^{n-1}(\mathfrak{g}), \sigma_{0}^{\prime \prime} \in S^{n-1}(\mathfrak{g}) \otimes \mathfrak{g}$. Set $\sigma=\sigma^{\prime}-\sigma_{0}^{\prime}=\sigma^{\prime \prime}+\sigma_{0}^{\prime \prime}$. Then

$$
\begin{aligned}
(\mathrm{d} \otimes \mathrm{id})(\sigma) & =(\mathrm{d} \otimes \mathrm{id})\left(\sigma^{\prime}\right)
\end{aligned}=-\alpha, \text { and } \quad(\mathrm{id} \otimes \mathrm{~d})(\sigma)=(\mathrm{id} \otimes \mathrm{~d})\left(\sigma^{\prime \prime}\right)=-\beta .
$$

So equations (3.13), (3.14) and (3.15) imply the existence of a solution σ of (3.11). Then $(\epsilon \otimes \epsilon) \circ \mathrm{d}=-\epsilon$, so

$$
(\epsilon \otimes \mathrm{id})(\sigma)=-(\epsilon \otimes \epsilon) \circ(\mathrm{d} \otimes \mathrm{id})(\sigma)=(\epsilon \otimes \epsilon \otimes \mathrm{id})(\alpha)=0
$$

and in the same way $(\mathrm{id} \otimes \epsilon)(\sigma)=0$. So σ satisfies also equation (3.10). The unicity of σ then follows from the fact that $\operatorname{Ker}(\mathrm{d} \otimes \mathrm{id}) \cap \operatorname{Ker}(\mathrm{id} \otimes \mathrm{d})=$ $\mathfrak{g} \otimes \mathfrak{g} \subset S^{2}(\mathfrak{g} \oplus \mathfrak{g})$, so the intersection of $\operatorname{Ker}(\mathrm{d} \otimes \mathrm{id}) \cap \operatorname{Ker}(\mathrm{id} \otimes \mathrm{d})$ with $S^{n}(\mathfrak{g} \oplus \mathfrak{g})$ is zero as $n \geq 3$.

Proposition 3.4. The elements α and β defined by (3.9) satisfy the identities (3.13), (3.14) and (3.15).

Proof. Apply $\Delta \otimes \mathrm{id} \otimes \mathrm{id}-\mathrm{id} \otimes \Delta \otimes \mathrm{id}$ to the identity

$$
\begin{equation*}
(\Delta \otimes \mathrm{id})\left(\widetilde{\rho}_{n}\right)=\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}+\alpha . \tag{3.16}
\end{equation*}
$$

This yields an identity in $\mathcal{O}_{\left(G^{*}\right)^{4}} / \mathfrak{m}_{\left(G^{*}\right)^{4}}^{n+1}$. Its left side vanishes since $(\Delta \otimes \mathrm{id}-\mathrm{id} \otimes \Delta) \circ \Delta=0$. Using again (3.16), we get
$0=\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4}+\alpha^{1,2,4}\right) \star \widetilde{\rho}_{n}^{3,4}+\alpha^{12,3,4}-\widetilde{\rho}_{n}^{1,4} \star\left(\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}+\alpha^{2,3,4}\right)-\alpha^{1,23,4}$
(we use the notation $\gamma^{12,3,4}=(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\gamma), \gamma^{1,23,4}=(\mathrm{id} \otimes \Delta \otimes \mathrm{id})(\gamma)$, etc.). Now identities (3.12) yield:
$0=\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}+\alpha^{1,2,4}\right)+\alpha^{12,3,4}-\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}+\alpha^{2,3,4}\right)-\alpha^{1,23,4}$
that is

$$
\left(\mathrm{d}^{(2)} \otimes \mathrm{id}\right)(\alpha)=0 .
$$

Applying id $\otimes \Delta \otimes \mathrm{id}-\mathrm{id} \otimes \mathrm{id} \otimes \Delta$ to the identity

$$
\begin{equation*}
(\mathrm{id} \otimes \Delta)\left(\widetilde{\rho}_{n}\right)=\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}+\beta, \tag{3.17}
\end{equation*}
$$

we get in the same way

$$
\left(\mathrm{id} \otimes \mathrm{~d}^{(2)}\right)(\beta)=0 .
$$

So α and β satisfy (3.14).
Apply now id $\otimes \mathrm{id} \otimes \Delta$ to (3.16), $\Delta \otimes \mathrm{id} \otimes \mathrm{id}$ to (3.17), and substract the resulting equalities. Using again (3.16) and (3.17), we get

$$
\begin{aligned}
0= & \left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{1,3}+\beta^{1,3,4}\right) \star\left(\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{2,3}+\beta^{2,3,4}\right)+\alpha^{12,3,4} \\
& -\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4}+\alpha^{1,2,4}\right) \star\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}+\alpha^{1,2,3}\right)-\beta^{1,2,34} .
\end{aligned}
$$

Using again identities (3.12), and the fact that $\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,4}=\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{1,3}$, we get

$$
\alpha^{12,3,4}-\alpha^{1,2,3}-\alpha^{1,2,4}=\beta^{1,2,34}-\beta^{1,2,3}-\beta^{1,2,4},
$$

that is $(\mathrm{d} \otimes \mathrm{id} \otimes \mathrm{id})(\alpha)=(\mathrm{id} \otimes \mathrm{id} \otimes \mathrm{d})(\beta)$. So α and β satisfy (3.13). To prove that they also satisfy (3.15), let us set

$$
\psi=\widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}-\widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}
$$

and let us prove:
Lemma 3.5. We have $\psi=0$.
Proof of Lemma. Since $\rho_{n}^{1,2} \star \rho_{n}^{1,3} \star \rho_{n}^{2,3}=\rho_{n}^{1,2} \star \rho_{n}^{12,3}=\rho_{n}^{21,3} \star \rho_{n}^{1,2}=$ $\rho_{n}^{2,3} \star \rho_{n}^{1,3} \star \rho_{n}^{1,2}$, the class of ψ in $\mathcal{O}_{\left(G^{*}\right)^{3}} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n}$ is zero, so $\psi \in \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n+1}$. We identify ψ with an element of $S^{n}(\mathfrak{g} \oplus \mathfrak{g} \oplus \mathfrak{g})$. Then

$$
\begin{aligned}
& \psi^{12,3,4}= \widetilde{\rho}_{n}^{12,3} \star \widetilde{\rho}_{n}^{12,4} \star \widetilde{\rho}_{n}^{3,4}-\widetilde{\rho}_{n}^{3,4} \star \widetilde{\rho}_{n}^{12,4} \star \widetilde{\rho}_{n}^{12,3} \\
&=\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}+\alpha^{1,2,3}\right) \star\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4}+\alpha^{1,2,4}\right) \star \widetilde{\rho}_{n}^{3,4} \\
&-\widetilde{\rho}_{n}^{3,4} \star\left(\widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4}+\alpha^{1,2,4}\right) \star\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}+\alpha^{1,2,3}\right) \\
&= \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}-\widetilde{\rho}_{n}^{3,4} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3} \\
& \quad \text { by virtue of }(3.12) \\
&= \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,4} \star\left(\widetilde{\rho}_{n}^{3,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{2,3}+\psi^{2,3,4}\right) \\
&+\left(-\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{3,4}+\psi^{1,3,4}\right) \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{2,3} \\
& \quad \text { since } \widetilde{\rho}^{1,3} \star \widetilde{\rho}^{2,4}=\widetilde{\rho}^{2,4} \star \widetilde{\rho}^{1,3} \text { and } \widetilde{\rho}^{1,4} \star \widetilde{\rho}^{2,3}=\widetilde{\rho}^{2,3} \star \widetilde{\rho}^{1,4} \\
&= \psi^{1,3,4}+\psi^{2,3,4} \quad \text { by virtue of }(3.12) .
\end{aligned}
$$

We have also

$$
\begin{aligned}
\psi^{1,23,4}= & \left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}+\beta^{1,2,3}\right) \star \widetilde{\rho}_{n}^{1,4} \star\left(\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}+\alpha^{2,3,4}\right) \\
& -\left(\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}+\alpha^{2,3,4}\right) \star \widetilde{\rho}_{n}^{1,4} \star\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}+\beta^{1,2,3}\right) \\
= & \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4}-\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{3,4} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2} \\
= & \widetilde{\rho}_{n}^{1,3} \star\left(\widetilde{\rho}_{n}^{2,4} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{1,2}+\psi^{1,2,4}\right) \star \widetilde{\rho}_{n}^{3,4} \\
& +\widetilde{\rho}_{n}^{2,4} \star\left(-\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,4} \star \widetilde{\rho}_{n}^{3,4}+\psi^{1,3,4}\right) \star \widetilde{\rho}_{n}^{1,2} \\
= & \psi^{1,2,4}+\psi^{2,3,4} .
\end{aligned}
$$

In the same way, one proves that $\psi^{1,2,34}=\psi^{1,2,3}+\psi^{1,2,4}$. Therefore, we get

$$
(\mathrm{d} \otimes \mathrm{id} \otimes \mathrm{id})(\psi)=(\mathrm{id} \otimes \mathrm{~d} \otimes \mathrm{id})(\psi)=(\mathrm{id} \otimes \mathrm{id} \otimes \mathrm{~d})(\psi)=0
$$

so $\psi \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$. When $n>3$, this implies $\psi=0$. When $n=3, \psi$ is equal to $\left[r^{1,2}, r^{1,3}\right]+\left[r^{1,2}, r^{2,3}\right]+\left[r^{1,3}, r^{2,3}\right]$ and is also zero.
End of proof of Proposition 3.4 Let us now prove that α and β satisfy equation (3.15). For this, we first prove:

Lemma 3.6. We have

$$
\begin{equation*}
\widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{12,3}=\widetilde{\rho}_{n}^{21,3} \star \widetilde{\rho}_{n}^{1,2} \tag{3.18}
\end{equation*}
$$

(equality in $\left.\mathcal{O}_{\left(G^{*}\right)^{3}} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n+1}\right)$.
Proof of Lemma. We will prove that if

$$
f \in\left(\mathfrak{m}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G^{*}}\right) /\left(\mathfrak{m}_{G^{*} \times G^{*}}^{n+1} \cap\left(\mathfrak{m}_{G^{*}} \bar{\otimes} \mathfrak{m}_{G^{*}}\right)\right)
$$

the equality

$$
\begin{equation*}
\widetilde{\rho}_{n}^{1,2} \star f^{12,3}=f^{21,3} \star \widetilde{\rho}_{n}^{1,2} \tag{3.19}
\end{equation*}
$$

holds in $\mathcal{O}_{\left(G^{*}\right)^{3}} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n+1}$. There exist element $f_{i}^{\prime}, f_{i}^{\prime \prime}$ of $\mathfrak{m}_{G^{*}}$, such that f is equal to the class of $\sum_{i} f_{i}^{\prime} \otimes f_{i}^{\prime \prime}$. Then we have $\widetilde{\rho}_{n}^{1,2} \star\left(f_{i}^{\prime}\right)^{12}=\left(f_{i}^{\prime}\right)^{21} \star \widetilde{\rho}_{n}^{1,2}$ (equality in $\left.\mathcal{O}_{\left(G^{*}\right)^{3}} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n}\right)$, because $\rho_{n} \in \operatorname{Lift}^{\prime}{ }_{\leq n}(\mathfrak{g})=\operatorname{Lift}_{\leq n}^{\prime}(\mathfrak{g})$ by virtue of Lemma 3.2. Tensoring this identity with $f_{i}^{\prime \prime} \in \mathfrak{m}_{G^{*}}$, we get

$$
\left(\widetilde{\rho}_{n}^{1,2} \star\left(f_{i}^{\prime}\right)^{12}\right)\left(f_{i}^{\prime \prime}\right)^{3}=\left(\left(f_{i}^{\prime}\right)^{21} \star \widetilde{\rho}_{n}^{1,2}\right)\left(f_{i}^{\prime \prime}\right)^{3},
$$

an equality in

$$
\left(\mathcal{O}_{G^{*} \times G^{*}} \bar{m}_{G^{*}}\right) /\left(\mathfrak{m}_{G^{*} \times G^{*}}^{n} \bar{\otimes} \mathfrak{m}_{G^{*}}\right)
$$

and therefore also in $\mathcal{O}_{\left(G^{*}\right)^{3}} / \mathfrak{m}_{\left(G^{*}\right)^{3}}^{n+1}$. Summing over all indices i, we get (3.19), which implies (3.18) by taking $f=\widetilde{\rho}_{n} . \quad \square$ Plugging (3.16) into (3.18), we get

$$
\widetilde{\rho}_{n}^{1,2} \star\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}+\alpha^{1,2,3}\right)=\left(\widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,3}+\alpha^{2,1,3}\right) \star \widetilde{\rho}_{n}^{1,2} .
$$

Then (3.12) yields:

$$
\alpha^{2,1,3}-\alpha^{1,2,3}=\widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}-\widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2},
$$

so Lemma 3.5 gives:

$$
\alpha^{2,1,3}-\alpha^{1,2,3}=0 .
$$

In the same way, we have

$$
\widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,23}=\widetilde{\rho}_{n}^{1,32} \star \widetilde{\rho}_{n}^{2,3}
$$

so by (3.17), we get

$$
\widetilde{\rho}_{n}^{2,3} \star\left(\widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}+\beta^{1,2,3}\right)=\left(\widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{1,3}+\beta^{1,3,2}\right) \star \widetilde{\rho}_{n}^{2,3},
$$

so $\beta^{1,2,3}-\beta^{1,3,2}=\widetilde{\rho}_{n}^{1,2} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{2,3}-\widetilde{\rho}_{n}^{2,3} \star \widetilde{\rho}_{n}^{1,3} \star \widetilde{\rho}_{n}^{1,2}$, so by Lemma 3.5, $\beta^{1,2,3}-\beta^{1,3,2}=0$. So α and β satisfy equation (3.15).
Let us now construct the map $\lambda_{n}: \operatorname{Lift}^{\prime} \leq n(\mathfrak{g}) \rightarrow \operatorname{Lift}^{\prime} \leq n+1(\mathfrak{g})$. Let $\rho \mapsto \widetilde{\rho}$ be any map

$$
\begin{aligned}
&\left\{\rho \in \mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n} \mid(\epsilon \otimes \operatorname{id})(\rho)=(\operatorname{id} \otimes \epsilon)(\rho)=0\right\} \\
& \rightarrow\left\{\widetilde{\rho} \in \mathcal{O}_{G^{*} \times G^{*}} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1} \mid(\epsilon \otimes \operatorname{id})(\widetilde{\rho})=(\operatorname{id} \otimes \epsilon)(\widetilde{\rho})=0\right\},
\end{aligned}
$$

which is a section of the canonical projection map (we may take $\rho \mapsto \widetilde{\rho}$ linear). If $\rho_{n} \in \operatorname{Lift}^{\prime} \leq n(\mathfrak{g})$, we define α and β by (3.9). Then Proposition 3.4 and Lemma 3.3 allow us to construct a unique element $\sigma \in$ $\mathfrak{m}_{G^{*} \times G^{*}}^{n} / \mathfrak{m}_{G^{*} \times G^{*}}^{n+1}$, such that $\widetilde{\rho}_{n}+\sigma \in \operatorname{Lift}^{\prime} \leq n+1(\mathfrak{g})$. We then set

$$
\lambda_{n}\left(\rho_{n}\right)=\widetilde{\rho}_{n}+\sigma .
$$

This defines the desired map $\lambda_{n}: \operatorname{Lift}^{\prime} \leq n(\mathfrak{g}) \rightarrow \operatorname{Lift}^{\prime} \leq n+1(\mathfrak{g})$.

- c - Proof of Theorem 3.1

$r \in \mathfrak{g} \otimes \mathfrak{g}$ defines an element ρ_{3} of Lift ${ }^{\prime} \leq 3(\mathfrak{g})$. Applying to it $\lambda_{3}, \lambda_{4}, \ldots$, we define a sequence ρ_{n} of elements of $\operatorname{Lift}^{\prime} \leq n(\mathfrak{g})$, and therefore an element $\rho \in \operatorname{Lift}^{\prime}(\mathfrak{g})$. According to Lemma 3.2, ρ is then an element of $\operatorname{Lift}(\mathfrak{g})$.

§ 4 Construction of universal lifts (proof of Theorem 0.10)

Theorem 0.10 can be proved in the same way as its "non-universal" counterpart Theorem 0.8:

1. the unicity part is proved using the same argument;
2. the existence part can be proved either using the map Quant $(\mathbb{K}) \rightarrow$ Lift $_{\text {univ }}$, and the nonemptiness of Quant (\mathbb{K}) (see [EK]); or it can be proved following the arguments of Section 4.

§5 Appendix: a commutative diagram related to QFSH algebras

The aim of this section is to prove the following lemma:
Lemma 5.1. Let σ be an arbitrary element of \mathfrak{m}_{\hbar} and $[\sigma]$ be its class in $\mathfrak{m}_{\hbar} /\left(\hbar \mathfrak{m}_{\hbar}+\mathfrak{m}_{\hbar}^{2}\right)$. Since $\mathfrak{m}_{\hbar} /\left(\hbar \mathfrak{m}_{\hbar}+\mathfrak{m}_{\hbar}^{2}\right)$ identifies with \mathfrak{g}, we have $[\sigma] \in \mathfrak{g}$. Since $\mathfrak{m}_{\hbar} \subset \hbar U_{\hbar}(\mathfrak{g})$, σ is an element of $\hbar U_{\hbar}(\mathfrak{g})$. Then $\left(\frac{\sigma}{\hbar} \bmod \hbar\right)$ is an element of $U(\mathfrak{g})$. We have the following identity in $U(\mathfrak{g})$:

$$
\left(\frac{\sigma}{\hbar} \bmod \hbar\right)=[\sigma] .
$$

This lemma clearly implies Lemma 1.2: if $\sigma=\sum_{i} \sigma_{i}^{1} \otimes \sigma_{i}^{2} \in \mathfrak{m}_{\hbar} \bar{\otimes}_{\mathfrak{m}_{\hbar}}$ satisfies the hypothesis of Lemma 1.2, then $[\sigma]=\sum_{i}\left[\sigma_{i}^{1}\right] \otimes\left[\sigma_{i}^{2}\right] \in \mathfrak{g}^{\otimes 2}$ and

$$
\begin{aligned}
\left.\frac{\sigma}{\hbar^{2}}\right|_{U_{\hbar}^{\widehat{\otimes} 2} \rightarrow U^{\otimes 2}} & =\left.\sum_{i}\left(\frac{\sigma_{i}^{1}}{\hbar} \otimes \frac{\sigma_{i}^{2}}{\hbar}\right)\right|_{U_{\hbar}^{\widehat{\otimes} 2} \rightarrow U^{\otimes 2}} \\
& =\left.\left.\sum_{i} \frac{\sigma_{i}^{1}}{\hbar^{2}}\right|_{U_{\hbar} \rightarrow U} \otimes \frac{\sigma_{i}^{2}}{\hbar^{2}}\right|_{U_{\hbar} \rightarrow U}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i}\left[\sigma_{i}^{1}\right] \otimes\left[\sigma_{i}^{2}\right] \quad \quad(\text { by Lemma } 5.1) \\
& =[\sigma]
\end{aligned}
$$

We use the notation $\left.x\right|_{U_{\hbar}^{\otimes} k \rightarrow U^{\otimes k}}$ for $(x \bmod \hbar)$, when $x \in U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} k}$.
More generally, in this section, we will consider a Lie bialgebra (\mathfrak{g}, δ) over a field $\mathbb{K},\left(U_{\hbar}(\mathfrak{g}), \Delta\right)$ a quantization of $U(\mathfrak{g})$ and the subalgebra $U_{\hbar}(\mathfrak{g})^{\prime} \subset$ $U_{\hbar}(\mathfrak{g})$, where

$$
U_{\hbar}(\mathfrak{g})^{\prime}=\left\{x \in U_{\hbar}(\mathfrak{g}) \mid \forall n \in \mathbb{N}, \delta^{(n)}(x) \in \hbar^{n} U_{\hbar}(\mathfrak{g})^{\widehat{\otimes} n}\right\}
$$

(where $\delta^{(n)}=(\mathrm{id}-\eta \circ \varepsilon)^{\otimes n} \circ \Delta^{(n)}$). The definition of $U_{\hbar}(\mathfrak{g})^{\prime}$ yields, when $n=1$ or 2 :

Lemma 5.2. Let f be an element of $U_{\hbar}(\mathfrak{g})^{\prime}$. We have:

- $f-\varepsilon(f) \in \hbar U_{\hbar}(\mathfrak{g})$
- $\left.\frac{f-\varepsilon(f)}{\hbar}\right|_{U_{\hbar} \rightarrow U} \in \mathfrak{g} \subset U(\mathfrak{g})$

According to a theorem of Drinfeld (see [Dr] and also [Ga]) the quantized formal series Hopf algebra $U_{\hbar}(\mathfrak{g})^{\prime}$ is a quantization of the function algebra $\mathcal{O}_{G^{*}}$. The projection $U_{\hbar}(\mathfrak{g})^{\prime} / \hbar U_{\hbar}(\mathfrak{g})^{\prime} \rightarrow \mathcal{O}_{G^{*}} \simeq U\left(\mathfrak{g}^{*}\right)^{*}$ may be described as follows:

Theorem 5.3. For $f \in U_{\hbar}(\mathfrak{g})^{\prime}$, let $\left.f\right|_{\mathcal{O}_{\hbar} \rightarrow \mathcal{O}}$ be its class in $U_{\hbar}(\mathfrak{g})^{\prime} / \hbar U_{\hbar}(\mathfrak{g})^{\prime}$. There exists a unique Hopf pairing $U\left(\mathfrak{g}^{*}\right) \otimes\left(U_{\hbar}(\mathfrak{g})^{\prime} / \hbar U_{\hbar}(\mathfrak{g})^{\prime}\right) \rightarrow \mathbb{K}$, such that

$$
\forall \xi \in \mathfrak{g}^{*}, \forall f \in U_{\hbar}(\mathfrak{g})^{\prime}\left\langle\xi,\left.f\right|_{\mathcal{O}_{\hbar} \rightarrow \mathcal{O}}\right\rangle=\left\langle\xi,\left.\frac{f-\varepsilon(f)}{\hbar}\right|_{U_{\hbar} \rightarrow U}\right\rangle_{\mathfrak{g} \times \mathfrak{g}^{*}}
$$

This pairing induces an isomorphism $U_{\hbar}(\mathfrak{g})^{\prime} / \hbar U_{\hbar}(\mathfrak{g})^{\prime} \xrightarrow[\lambda]{\sim} U\left(\mathfrak{g}^{*}\right)^{*}$.
We can now reformulate Lemma 5.1 (in this section, we will use the notation $(H)_{0}$ for the maximal ideal $\operatorname{Ker}(\varepsilon)$ of a Hopf algebra $\left.H\right)$:

Proposition 5.4. The following diagram commutes

$$
\begin{array}{rll}
\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} /\left(\hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}+\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}^{2}\right) & \stackrel{(\mathrm{a})}{\sim} & \left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0} /\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0}^{2} \\
(\mathrm{~b}) \downarrow & & \\
\hbar(\mathrm{d}) \\
\hbar U_{\hbar}(\mathfrak{g}) / \hbar^{2} U_{\hbar}(\mathfrak{g}) & \stackrel{(\mathrm{c})}{\sim} & \\
& &
\end{array}
$$

where $\operatorname{can}_{\mathfrak{g}}: \mathfrak{g} \hookrightarrow U(\mathfrak{g})$ is the canonical injection and the other maps are given by:
(a) is the composed map

$$
\begin{aligned}
&\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} /\left(\hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}+\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}^{2}\right) \\
& \stackrel{\sim}{\sim}\left(\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} / \hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}\right) /\left(\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} / \hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}\right)^{2} \\
& \rightarrow\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0} /\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0}^{2}
\end{aligned}
$$

where the last map is induced by $\lambda: U_{\hbar}(\mathfrak{g})^{\prime} / \hbar U_{\hbar}(\mathfrak{g})^{\prime} \xrightarrow[\lambda]{\sim} U\left(\mathfrak{g}^{*}\right)^{*}$ (see Theorem 5.3),
(b) is the quotient map of the injection: $\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} \hookrightarrow \hbar U_{\hbar}(\mathfrak{g})$ with respect to the ideals $\hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}+\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}^{2} \subset\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}$ in the left hand side, and $\hbar^{2} U_{\hbar}(\mathfrak{g}) \subset \hbar U_{\hbar}(\mathfrak{g})$ in the right hand side,
(c) is the map

$$
\begin{aligned}
\hbar U_{\hbar}(\mathfrak{g}) / \hbar^{2} U_{\hbar}(\mathfrak{g}) & \rightarrow U_{\hbar}(\mathfrak{g}) / \hbar U_{\hbar}(\mathfrak{g}) \simeq U(\mathfrak{g}) \\
x & \mapsto \hbar^{-1} x,
\end{aligned}
$$

(d) is induced by the pairing $\mathfrak{g}^{*} \otimes\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0} /\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0}^{2} \rightarrow \mathbb{K}$, quotient of the pairing $\mathfrak{g}^{*} \otimes\left(U\left(\mathfrak{g}^{*}\right)^{*}\right)_{0} \rightarrow \mathbb{K}$, given by $\xi \otimes T \mapsto\left\langle T, \operatorname{can}_{\mathfrak{g}^{*}}(\xi)\right\rangle$ ($\operatorname{can}_{\mathfrak{g}^{*}}: \mathfrak{g}^{*} \hookrightarrow U\left(\mathfrak{g}^{*}\right)$ is the canonical injection).

Proof. Let φ^{\prime} be an element of $\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}$. Recall that $\left[\varphi^{\prime}\right]$ denotes its class in $\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0} /\left(\hbar\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}+\left(U_{\hbar}(\mathfrak{g})^{\prime}\right)_{0}^{2}\right)$. Thanks to Lemma 5.2, we have $\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U} \in \mathfrak{g}$ so $(\mathrm{c}) \circ(\mathrm{b})\left(\left[\varphi^{\prime}\right]\right)=\operatorname{can}_{\mathfrak{g}}\left(\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U}\right)$. Thus we should show that

$$
\begin{equation*}
(\mathrm{d}) \circ(\mathrm{a})\left(\left[\varphi^{\prime}\right]\right)=\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U} \tag{5.20}
\end{equation*}
$$

Let S be a supplementary of \mathfrak{g}^{*} in $U\left(\mathfrak{g}^{*}\right)_{0}$ (e.g., the image of $\oplus_{i \geq 2} S^{i}\left(\mathfrak{g}^{*}\right)$ under the symmetrization map). For $x \in \mathfrak{g}$, let $f_{x} \in U\left(\mathfrak{g}^{*}\right)_{0}^{*}$ be defined
by $f_{x}(\xi)=\langle\xi, x\rangle$ for $\xi \in \mathfrak{g}^{*}$ and $\left.f_{x}\right|_{S}=0$. Then the class $\left[f_{x}\right]_{0}$ of f_{x} in $U\left(\mathfrak{g}^{*}\right)_{0}^{*} /\left(U\left(\mathfrak{g}^{*}\right)_{0}^{*}\right)^{2}$ is independent of S. Moreover, it is clear that we have the identity $(\mathrm{d})\left(f_{x}\right)=x$ for any $x \in \mathfrak{g}$, so

$$
\text { (d) }\left(\left[\left.f_{\frac{\varphi^{\prime}}{\hbar}}\right|_{U_{\hbar} \rightarrow U}\right]_{0}\right)=\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U}
$$

So the identity (5.20) (and thus the proposition) will be true if

$$
\begin{equation*}
(\mathrm{a})\left(\left[\varphi^{\prime}\right]\right)=\left[\left.f_{\frac{\varphi^{\prime}}{\hbar}}\right|_{U_{\hbar} \rightarrow U}\right]_{0} \tag{5.21}
\end{equation*}
$$

Both sides belong to $U\left(\mathfrak{g}^{*}\right)_{0}^{*} /\left(U\left(\mathfrak{g}^{*}\right)_{0}^{*}\right)^{2}=\mathfrak{g}$, so it is enough to show that their pairings with any element $\xi \in \mathfrak{g}^{*}$ coincide. We have

$$
\left\langle\xi,\left[\left.f_{\frac{\varphi^{\prime}}{\hbar}}\right|_{U_{\hbar} \rightarrow U}\right]_{0}\right\rangle=\left\langle\xi,\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U}\right\rangle
$$

and

$$
\left\langle\xi,(\mathrm{a})\left(\left[\varphi^{\prime}\right]\right)\right\rangle=\left\langle\xi,\left.\frac{\varphi^{\prime}}{\hbar}\right|_{U_{\hbar} \rightarrow U}\right\rangle \text { by construction of (a), }
$$

which proves identity (5.21).

ACKNOWLEDGEMENTS

We would like to thank P. Etingof and P. Xu for discussions.

References

[Dr] Drinfeld V. "Quantum groups". Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI 1, 2 (1987), 798-820.
[EE] Enriquez B., Etingof P. "On the invertibility of quantization functors of Lie bialgebras", in preparation.
[EH] Enriquez B., Halbout G. "An \hbar-adic valuation property of universal R-matrices", to appear in J. of Algebra.
[EK] Etingof P., Kazhdan D. "Quantization of Lie bialgebras I", Selecta Math. (New Series) 2 (1996), 1-41.
[Ga] Gavarini F. "The quantum duality principle", Ann. Inst. Fourier $5 \mathbf{2}$ (2002), no. 3, 1-26.
[GH] Gavarini F., Halbout G. "Tressages des groupes de Poisson formels à dual quasitriangulaire". J. Pure Appl. Algebra 161 (2001), no. 3, 295-307.
[GH2] Gavarini F., Halbout G. "Braiding structures on formal Poisson groups and classical solutions of the QYBE", to appear in J. of Geom. Phys.
[Re] Reshetikhin N. "Quasitriangularity of quantum groups at roots of 1 ", Commun. Math. Phys. 170 (1995), 79-99.
[WX] Weinstein A., Xu P. "Classical Solutions of the Quantum YangBaxter Equation" Commun. Math. Phys. 148 (1992), 309-343.

