We consider systems which are globally completely observable and output-to-state stable. The former property guarantees the existence of coordinates such that the dynamics can be expressed in observability form. The latter property guarantees the existence of a state norm observer and therefore the possibility of bounding any continuous state functions. Both properties allow to conceptually build an observer from an approximation of an exponentially attractive invariant manifold in the space of the system state and an output driven dynamic extension. The proposed observer provides convergence to zero of the estimation error within the domain of definition of the solutions.
Astolfi A., P.L. (2006). Global complete observability and output-to-state stability imply the existence of a globally convergent observer. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 18(1), 32-65.
Tipologia: | Articolo su rivista |
Citazione: | Astolfi A., P.L. (2006). Global complete observability and output-to-state stability imply the existence of a globally convergent observer. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 18(1), 32-65. |
IF: | Con Impact Factor ISI |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore ING-INF/04 - Automatica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00498-005-0161-8 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 1-lug-2006 |
Titolo: | Global complete observability and output-to-state stability imply the existence of a globally convergent observer |
Autori: | |
Autori: | Astolfi A., Praly L. |
Appare nelle tipologie: | 01 - Articolo su rivista |