The system of partial differential equations -div (vDu) = f in Q vertical bar Du vertical bar - 1 = 0 in {v > 0} arises in the analysis of mathematical models for sandpile growth and in the context of the Monge-Kantorovich optimal mass transport theory. A representation formula for the solutions of a related boundary value problem is here obtained, extending the previous two-dimensional result of the first two authors to arbitrary space dimension. An application to the minimization of integral functionals of the form integral(Omega) [h(vertical bar Du vertical bar)-f(x)u]dx, with f >= 0, and h >= 0 possibly non-convex, is also included.
Cannarsa, P., Cardaliaguet, P., Crasta, G., & Giorgieri, E. (2005). A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 24(4), 431-457.
Tipologia: | Articolo su rivista |
Citazione: | Cannarsa, P., Cardaliaguet, P., Crasta, G., & Giorgieri, E. (2005). A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 24(4), 431-457. |
IF: | Con Impact Factor ISI |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-005-0328-7 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2005 |
Titolo: | A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications |
Autori: | |
Autori: | Cannarsa, P; Cardaliaguet, P; Crasta, G; Giorgieri, E |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
cccg_finale.pdf | Articolo principale | N/A | EmbargoOpen Access Visualizza/Apri |