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Abstract The system of partial differential equations

{−div (vDu) = f in �

|Du| − 1 = 0 in {v > 0}
arises in the analysis of mathematical models for sandpile growth and in the con-
text of the Monge–Kantorovich optimal mass transport theory. A representation
formula for the solutions of a related boundary value problem is here obtained,
extending the previous two-dimensional result of the first two authors to arbitrary
space dimension. An application to the minimization of integral functionals of the
form ∫

�

[h(|Du|) − f (x)u] dx,

with f ≥ 0, and h ≥ 0 possibly non-convex, is also included.
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1 Introduction

This paper is concerned with the system of partial differential equations



−div (vDu) = f in �

v ≥ 0, |Du| ≤ 1 in �

|Du| − 1 = 0 in {v > 0},
(1)

complemented with the conditions
{

u ≥ 0, in �

u ≡ 0 on ∂�.
(2)

Here � ⊂ R
n is a bounded domain with C2 boundary and f ≥ 0 is a continuous

function in �.
The interest in the above problem can be motivated in several ways. For in-

stance, (1)–(2) characterizes the equilibrium solutions of a system of PDEs in-
troduced in [3] and in [17] as a dynamical model for granular matter. Moreover,
system (1)–(2) plays the role of necessary conditions in the Monge–Kantorovich
optimal mass transport theory, as shown in [12]. Problem (1)–(2) has been ana-
lyzed by the first two authors in [4] in the case of dimension n = 2, obtaining a
representation formula for the solution. In this paper we will generalize the result
of [4] to an arbitrary space dimension, characterizing the unique solution (in a
suitable weak sense) of (1)–(2).

To describe the result more precisely, let us introduce our notations. We denote
by d : � → R the distance function from the boundary of � and by � the singular
set of d , that is the set of points x ∈ � at which d is not differentiable. Moreover,
we indicate with �(x) the set of projections of x onto ∂� and, when x ∈ �\�, we
denote by κi (x), i ∈ {1, . . . , n − 1}, the principal curvatures of ∂� at the (unique)
projection �(x) of x onto ∂�. In our analysis, a major role will be played by the
function

τ(x) = min{t ≥ 0 : x + t Dd(x) ∈ �̄} ∀x ∈ �\�,

which we call the maximal retraction length of � onto � or normal distance to
�̄.

We will prove that, in arbitrary space dimension, the unique solution of system
(1)–(2) is given by the pair (d, v f ), where d is the distance function from the
boundary ∂� and

v f (x) =
{∫ τ(x)

0 f (x + t Dd(x))
∏n−1

i=1
1−(d(x)+t)κi (x)

1−d(x)κi (x)
dt ∀x ∈ � \ �,

0 ∀x ∈ �.
(3)
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The fact that relevant objects in Monge–Kantorovich theory can be represented
in terms of the principal curvatures of ∂� is certainly not new in the literature. For
instance, see the representation formula for the dynamic of a collapsing sandpile
obtained first, in [11], by a formal computation, and then in [15] by a rigorous
argument. Nevertheless, formula (3) is new—to our knowledge—and so is the
existence of a continuous solution v to (1)–(2), except for the case n = 2 studied
by the first two authors of this paper in [4].

Let us now compare the present work with its two-dimensional analogue [4].
On the one hand, showing that (d, v f ) is a solution of (1)–(2) follows the same
lines as in dimension two. On the other hand, the proof of the fact that (d, v f ) is
the unique solution to (1)–(2) requires completely different arguments. In fact, in
dimension two one can exploit the relatively simple structure of �̄ to show—by
a direct argument—that any solution (u, v) of (1)–(2) satisfies u ≡ d in the set
{x ∈ � : v f (x) > 0} and v ≡ 0 on �. Such a technique cannot be extended to
higher space dimension due to obvious topological obstructions.

In this paper, uniqueness is obtained as follows. To see that the first component
of a solution of (1)–(2) is given by the distance function, we adapt an idea of [21],
showing that (u, v) is a saddle point of a suitable integral functional. Then, to
identify the second component of (u, v) with the function v f , we compute the
variation of v along all rays x + t Dd(x), 0 < t < τ(x)—which cover the set
� \ �—as follows:

v(x) −
n−1∏
i=1

1 − (d(x) + t)κi (x)

1 − d(x)κi (x)
v(x + t Dd(x))

=
∫ t

0
f (x + s Dd(x))

n−1∏
i=1

1 − (d(x) + s)κi (x)

1 − d(x)κi (x)
ds. (4)

Finally, using the fact that v ≡ 0 on �̄—which can be proven by a blow up
argument as in [12]—we easily deduce that v ≡ v f in �.

We conclude this paper with an application to a problem in the Calculus of
Variations which may seem quite unrelated to the present context at first glance.

Let us consider an integral functional of the form

J0(u) =
∫

�

[h(|Du|) − f (x)u] dx, u ∈ W 1,1
0 (�), (5)

where f ∈ L∞(�) is a nonnegative function and h : [0,+∞) → [0,+∞] is a
lower semicontinuous function (possibly with non-convex values) satisfying

h(R) = 0, h(s) ≥ max{0, �(s − R)} for some constants R, � > 0. (6)

In a pioneering work [8], A. Cellina proved that, if � is a convex domain (that
is, an open bounded convex set) in R

2 with piecewise smooth (C2) boundary and
f ≡ 1, then J0 does attain its minimum in W 1,1

0 (�), and a minimizer is explicitly
given by the function

u�(x) = R d(x), x ∈ �, (7)

provided that the inradius r� of � is small enough. (We recall that r� is the supre-
mum of the radii of all balls contained in �.) This result has been extended to
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convex domains in R
n and to more general functionals in subsequent works (see

[6, 7, 10, 23, 24]). One common point of all these results is that the set � is always
a convex subset of R

n .
In this paper we will prove that the function u� defined in (7) is a minimizer of

the functional J0 in W 1,1
0 (�) even on possibly nonconvex domains �. This exten-

sion to nonconvex domains will be obtained as a consequence of the representation
formula for the solution of system (1)–(2).

This paper is organized as follows. Section 2 is concerned with notations and
preliminary results. In Sect. 3 we show that (d, v f ) is a solution of system (1)–(2)
in a suitable weak sense. Section 4 is devoted to the proof of uniqueness of such
a pair as a solution of system (1)–(2). Finally, Sect. 5 contains our application
to the existence of distance-like minimizers for the class of integral functionals
(5).

2 Preliminaries and Notations

Most of the results of this section and of the following one are a simple gener-
alization of those given in [4]. So, whenever we omit a proof, we understand a
reference to [4].

Let � be a bounded domain with C2 boundary ∂�. In what follows we denote
by d : � → R the distance function from the boundary of � and by � the singular
set of d , that is, the set of points x ∈ � at which d is not differentiable. Since d
is Lipschitz continuous, � has Lebesgue measure zero. Introducing the projection
�(x) of x onto ∂� in the usual way, � is also the set of points x at which �(x)
is not a singleton.

For any x ∈ ∂� and i = 1, . . . , n − 1, the number κi (x) denotes the i th
principal curvature of ∂� at the point x , corresponding to a principal direction
ei (x) orthogonal to Dd(x), with the sign convention κi ≥ 0 if the normal section
of � along the direction ei is convex. Also, we will label in the same way the
extension of κi to � \ � given by

κi (x) = κi (�(x)) ∀x ∈ � \ �. (8)

In the result below, p ⊗ q stands for the tensor product of two vectors p, q ∈
R

n , defined as (p ⊗ q)(x) = p 〈q, x〉 , ∀x ∈ R
n . We refer to [16] for the proof of

the representation formula for the Hessian matrix of d.

Proposition 2.1 For any x ∈ �̄ and any y ∈ �(x) we have

κi (y)d(x) ≤ 1 ∀i = 1, . . . , n − 1.

If, in addition, x ∈ �̄\�̄, then

κi (x)d(x) < 1 and D2 d(x) = −
n−1∑
i=1

κi (x)

1 − κi (x)d(x)
ei (x) ⊗ ei (x)

where ei (x) is the unit eigenvector corresponding to κi (x)
1−κi (x) d(x)

.
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Remark 2.2 Note that the regularity of � guarantees that the principal curvatures
κi are continuous functions on ∂�.

The set � of points x ∈ � \ � such that the equality sign holds in (2.1) for
some index i is called the set of regular conjugate points. It represents, in the sense
explained in the proposition below, the “boundary” of the singular set �.

Proposition 2.2 Under the assumption that � is a bounded domain with C2

boundary ∂�, we have �̄ ⊂ � and �̄ = � ∪ �.

Now, let us focus on the function

τ(x) =
{

min
{

t ≥ 0 : x + t Dd(x) ∈ �
}

∀x ∈ �̄\�,

0 ∀x ∈ �̄.
(9)

Since the map x �→ x + τ(x)D d(x) is a natural retraction of �̄ onto �̄, we
will refer to τ(·) as the maximal retraction length of � onto �̄ or normal distance
to �̄.

Let us analyze the regularity properties of τ . The first theorem is a fine regu-
larity result due to Li and Nirenberg (see [19]).

Theorem 2.4 Let � be a bounded domain in R
n with boundary of class C2,1. Then

the map τ defined in (9) is Lipschitz continuous on ∂�.

Hereafter, we will denote by Lip(τ ) the Lipschitz semi-norm of τ on ∂�.
Since x �→ x + τ(x)D d(x) maps ∂� onto �̄, a straightforward application of
Theorem 2.4 is that the (n − 1)-dimensional Hausdorff measure of �̄ is finite:

Corollary 2.5 Let � be a bounded domain in R
n with boundary of class C2,1.

Then,
Hn−1(�̄) ≤ k� Hn−1(∂�) < ∞

where k� ≥ 0 is a constant depending on Lip(τ ) and �.

For less regular domains the Lipschitz continuity of τ may fail, but continuity
is preserved.

Lemma 2.6 Assume that � is a connected bounded open subset of R
n with C2

boundary. Then the map τ , extended to 0 on �̄, is continuous in �̄.

We now give an approximation result that guarantees the stability of the sin-
gular set and of the maximal retraction length with respect to the convergence in
the C2 topology. Let us first define the signed distance from ∂� as

b�(x) =
{

d∂�(x) if x ∈ R
n \ �

−d∂�(x) if x ∈ �.

We say that a sequence of bounded domains {�k} with C2 boundary converges
to � in the C2 topology if b�k , Db�k and D2b�k converge to b�, Db� and D2b�,
uniformly in a neighborhood of ∂�.
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Proposition 2.7 Let {�k} be a sequence of bounded domains with C2 boundary.
For any k ∈ N, denote by �k and τk , respectively, the singular set and maximal
retraction length of �k . If {�k} converges to � in the C2 topology, then {�k}
converges to � in the Hausdorff topology, and {τk} converges to τ uniformly on
all compact subsets of �.

We conclude this section with the definition of viscosity solutions for the
eikonal equation and the connection with the distance function d from �.

For any measurable set A ⊂ R
n , we denote by |A| the Lebesgue measure of

A. If u : A → R is a bounded measurable function, then ‖u‖∞,A stands for the
essential supremum of u in A. If A is open and u is Lipschitz continuous, then, by
Rademacher’s Theorem, u is differentiable a. e. in A. In this case, we denote by
‖Du‖∞,A the number sup{|Du(x)| : x ∈ A, ∃Du(x)}, and by D∗u(x) the set of
limiting gradients of u at x defined as

D∗u(x) = {lim
k

Du(xk) : A � xk → x, ∃Du(xk)}.

As usual, the superdifferential of u at a point x ∈ A is the set

D+u(x) =
{

p ∈ R
n| lim sup

h→0

u(x + h) − u(x) − 〈p, h〉
|h| ≤ 0

}
,

while the subdifferential D−u is given by the formula D−u(x) = −D+(−u)(x).

Definition 2.8 We say that u is a viscosity solution of the eikonal equation |Du| =
1 in an open set � ⊂ R

n if, for any x ∈ � ⊂ R
n , we have

p ∈ D−u(x) : |p| ≥ 1,

p ∈ D+u(x) : |p| ≤ 1.

We recall that the distance function d is the unique viscosity solution of the
eikonal equation |Du| = 1 in �, with boundary condition u = 0 in ∂�. Equiv-
alently, d is the largest function such that ‖Du‖∞,� ≤ 1 and u = 0 on ∂�. The
reader is referred to [2] and to [20] for a detailed discussion on these topics.

3 Existence

In this section we prove that the pair (d, v f ), where d is the distance function from
∂� and

v f (x) =
{∫ τ(x)

0 f (x + t D d(x))
∏n−1

i=1
1−(d(x)+t)κi (x)

1−d(x)κi (x)
dt ∀x ∈ � \ �̄,

0 ∀x ∈ �,
(10)

is a solution of system (1)–(2). More precisely, we will prove the following result.

Theorem 3.1 Let � ⊂ R
n be a bounded domain with boundary of class C2 and

f ≥ 0 be a bounded continuous function in �. Then, the pair (d, v f ) defined
above satisfies (1)–(2) in the following sense:
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1. (d, v f ) is a pair of bounded continuous functions
2. d = 0 on ∂�, ‖Dd‖∞,� ≤ 1, and d is a viscosity solution of

|Du| = 1 in {x ∈ � : v f (x) > 0}
3. v f ≥ 0 in � and, for every test function φ ∈ C∞

c (�),∫
�

v f (x)〈D d(x), Dφ(x)〉 dx =
∫

�

f (x)φ(x) dx . (11)

We begin with two preliminary results, the former describing continuity and
differentiability properties of v f , the latter providing an approximation result for
the characteristic function of a compact set, in the spirit of capacity theory.

Proposition 3.2 Let � ⊂ R
n be a bounded domain with boundary of class C2 and

f ≥ 0 be a continuous function in �. Then, v f is a locally bounded continuous
function in �. Moreover, in any set �ε := {x ∈ � : d(x) > ε}, ε > 0, v f satisfies
the bound

0 ≤ v f (x) ≤ ‖ f ‖∞,�ε

n−1∏
i=1

[1 + ‖[κi ]−‖C(∂�)diam �]τ(x) ∀x ∈ �ε, (12)

where ‖[κi ]−‖C(∂�) := maxx∈∂�[κi (x)]−. If, in addition, ∂� is of class C2,1 and
f is Lipschitz continuous in �, then v f is locally Lipschitz continuous in �\�
and satisfies

−div (v f (x)D d(x)) = f (x) (13)

at each point x ∈ �\�̄ at which v f is differentiable.

Remark 3.3 Since d is C2 in �\�̄, equality (13) reads

〈Dv f (x), D d(x)〉 + v f (x)� d(x) + f (x) = 0. (14)

Moreover, a straightforward consequence of Proposition 3.2 is that the equality
−div (v f D d) = f holds in the sense of distributions in �\� as soon as f is
Lipschitz and ∂� of class C2,1.

Remark 3.4 A sharper upper bound on v f will be proven in Proposition 5.9.

Proof We note, first, that the maps Dd , τ and κi are continuous in �\�̄ since �
has a C2 boundary. Hence, when f is continuous, so is v f in �\�̄.

Let us now prove that v f is continuous on �̄. Observe that, for any x /∈ �̄, the
term

1 − (d(x) + t)κi (x)

1 − d(x)κi (x)
= 1 − d(x + t Dd(x))κi (x)

1 − d(x)κi (x)
0 < t < τ(x)

is nonnegative by Proposition 2.1. A simple computation shows that it is also

bounded by
∏n−1

i=1

[
1 + ‖[κi ]−‖C(∂�)

]
τ(x). This proves (12) recalling that

x + t Dd(x) ∈ �ε whenever x ∈ �ε and 0 ≤ t ≤ τ(x). The continuity of v f

on �̄ is an immediate consequence of (12).
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Next, let ∂� be of class C2,1 and f be Lipschitz continuous. Then,
Theorem 2.4 ensures that τ is Lipschitz continuous on ∂�. Therefore, τ = τ ◦ �
is locally Lipschitz continuous in �̄\�̄, as well as v f .

Finally, let us check the validity of (13) at every differentiability point x for v f

in the open set �\�̄. Set en := Dd(x) and consider {e1, . . . , en} as a coordinate
system, where ei = ei (x), i = 1, . . . , n−1 are the unit eigenvectors corresponding
to the principal curvatures of ∂� at the projection point of x on the boundary. We
note that, at any such point x ,

〈Dv f (x), Dd(x)〉 = d

dλ
v f (x + λDd(x))

∣∣∣∣
λ=0

.

But τ(x + λDd(x)) = τ(x) − λ and d(x + λDd(x)) = d(x) + λ for λ > 0
sufficiently small. So,

v f (x + λDd(x))

=
∫ τ(x)−λ

0
f
(

x + (t + λ)Dd(x)
) n−1∏

i=1

1 − (d(x) + λ + t)κi (x)

1 − (d(x) + λ)κi (x)
dt

(15)

=
∫ τ(x)

λ

f (x + t Dd(x))

n−1∏
i=1

1 − (d(x) + t)κi (x)

1 − (d(x) + λ)κi (x)
dt.

Therefore,

〈Dv f (x), Dd(x)〉

=
∫ τ(x)

0
f (x + t Dd(x))

n−1∑
i=1

[
1 − (d(x) + t)κi (x)2

(1 − d(x)κi (x))2

·
n−1∏
j = 1

j �= i

1 − (d(x) + t)κ j (x)

1 − d(x)κ j (x)

]
dt − f (x)

=
∫ τ(x)

0
f (x + t Dd(x))

[
n−1∑
i=1

κi (x)

(1 − d(x)κi (x))

]
n−1∏
i=1

1 − (d(x) + t)κi (x)

1 − d(x)κi (x)
dt

− f (x)

= −v f (x)� d(x) − f (x)

where we have taken into account the identity

� d(x) = −
n−1∑
i=1

κi (x)

(1 − d(x)κi (x))
∀x ∈ �\�̄,

that follows from Proposition 2.1. We have thus obtained (14)—an equivalent ver-
sion of (13)—and completed the proof. �
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Proposition 3.3 Let K be a compact subset of R
n such that Hn−1(K ) < ∞.

Then, there exists a sequence {ξk} of functions in W 1,1(Rn) with compact support,
such that

(a) 0 ≤ ξk ≤ 1 for every k ∈ N;
(b) d(Rn \ spt(ξk), K ) → 0 as k → ∞;
(c) K ⊂ int{x ∈ R

n : ξk(x) ≥ 1} for every k ∈ N;
(d) ξk → 0 in L1(Rn) as k → ∞;
(e)

∫
Rn |Dξk |dx ≤ C for every k ∈ N and some constant C > 0.

The standard notations d , spt and int stand for distance (between two sets),
support (of a function) and interior (of a set), respectively. We give a proof of the
proposition for the reader’s convenience.

Proof Since Hn−1(K ) < ∞, for any fixed k ∈ N there exists a sequence of points
{x (k)

i }i∈N in K and a sequence of radii {r (k)
i }i∈N such that

– 0 < r (k)
i ≤ 1

k and
∑

i (r
(k)
i )n−1 ≤ C(Hn−1(K ) + 1

k );

– K ⊂ int(
⋃

i B
r (k)

i
(x (k)

i ))

for some constant C > 0. Now, define, for any x ∈ R
n ,

ξ
(k)
i (x) =

[
1 − 1

r (k)
i

(
|x − x (k)

i | − r (k)
i

)
+

]
+

ξk(x) = sup
i∈N

ξ
(k)
i (x)

and observe that

spt
(
ξ

(k)
i

) = B̄
2r (k)

i

(
x (k)

i

)
spt
(
Dξ

(k)
i

) = B̄
2r (k)

i

(
x (k)

i

)\B
r (k)

i

(
x (k)

i

)
.

Then, ξk ∈ L1(Rn) since 0 ≤ ξk ≤ 1 and ξk has compact support. Moreover, an
easy computation shows that

∫
Rn |Dξ

(k)
i |dx = ωn(2n − 1)

(
r (k)

i

)n−1, where ωn is
the Lebesgue measure of the unit ball in R

n . So, applying [13] Lemma 2, p. 148,
we have
∫

Rn
|Dξk |dx ≤ sup

i

∫
Rn

|Dξ
(k)
i |dx ≤

∑
i

∫
Rn

|Dξ
(k)
k |dx ≤ C

(
Hn−1(K ) + 1

k

)

for some constant C > 0. Therefore, ξk ∈ W 1,1(Rn) and (e) holds true. Properties
(b) and (c) are true by construction. Finally, (d) follows by Lebesgue Theorem
because 0 ≤ ξk ≤ 1 and ξk(x) = 0 for any point x /∈ K and k large enough. �

Proof of Theorem 3.1 Let us first suppose that ∂� is of class C2,1 and f is Lipschitz
continuous in �. We will prove that the pair (d, v f ), with v f defined by (10), is
a solution of system (1)–(2). Let us point out, to begin with, that d is a viscosity
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solution of the eikonal equation in �, and so, a fortiori, in the open set {x ∈ � :
v f (x) > 0}. Therefore, what actually remains to be shown is that∫

�

f φdx =
∫

�

v f 〈Dd, Dφ〉dx ∀φ ∈ C∞
c (�). (16)

Since Hn−1(�) < ∞ by Proposition 2.5, we can apply Proposition 3.3 with
K = � to construct a sequence {ξk} enjoying properties (a), (b), (c) and (d).
Let φ ∈ C∞

c (�) be a test function, and set φk = φ(1 − ξk). Notice that, for k
large enough, spt(φk) ⊂⊂ �\�̄. This follows from (a), (b) and from the fact that
�̄ ⊂ � (see Proposition 2.2). Then, Proposition 3.2 and Rademacher’s Theorem
imply that −div (v f Dd) = f a. e. in �\�̄. So, multiplying this equation by φk
and integrating by parts, we obtain∫

�

f φkdx =
∫

�

v f (1 − ξk)〈Dd, Dφ〉dx −
∫

�

v f φ〈Dd, Dξk〉dx . (17)

We claim that the rightmost term above goes to 0 as k → ∞. Indeed,
∣∣∣
∫

�

v f φ〈Dd, Dξk〉dx
∣∣∣ ≤ ‖φ‖∞,�‖v f ‖∞,spt(ξk)

∫
�

|Dξk |dx

≤ C ‖φ‖∞,�‖v f ‖∞,spt(ξk)

where C is the constant provided by Proposition 3.3 (d). Now, using property (a)
of the proposition and the fact that v f is a continuous function vanishing on �, we
conclude that ‖v f ‖∞,spt(ξk) → 0 as k → ∞. This proves our claim. The conclu-
sion (16) immediately follows since, in view of (a) and (c), the integrals

∫
�

f φkdx
and

∫
�

v f (1 − ξk)〈Dd, Dφ〉dx converge to
∫
�

f φdx and
∫
�

v f 〈Dd, Dφ〉dx—
respectively—as k → ∞. �

Finally, the extra assumptions that ∂� be of class C2,1 and f be Lipschitz in �,
can be easily removed by an approximation argument based on the lemma below.
Let {�k} be a sequence of open domains, with C2,1 boundary, converging to � in
the C2 topology, and let { fk} be a sequence of Lipschitz functions in �k converging
to f , uniformly on all compact subsets of �. Denote by �k and τk , respectively,
the singular set and maximal retraction length of �k . Define vk(x) = 0 for every
x ∈ �̄k and

vk(x) =
∫ τk(x)

0
fk(x + t Ddk(x))

n−1∏
i=1

1 − (dk(x) + t)κk,i (x)

1 − dk(x)κk,i (x)
dt ∀x ∈ �k \ �̄k,

where κk,i (x) stands for the i th principal curvature of ∂�k at the projection of x .

Lemma 3.6 {vk} converges to v f in L1
loc(�).

Proof Since, owing to (12), the sequence {vk} is locally uniformly bounded in �,
it suffices to prove that it converges uniformly to v f on every compact subset of
�. For this, recall that, on account of Proposition 2.7, {�k} converges to � in the
Hausdorff topology and {τk} converges to τ uniformly on all compact subsets of
�. Then, our assumptions imply that {κk,i } converges to κi uniformly on every
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compact subset of �\� for any i ∈ {1, . . . , n − 1}, and so does {vk} to v f . To
complete the proof it suffices to combine the above local uniform convergence in
�\� with the estimate

0 ≤ vk(x) ≤ ‖ fk‖∞,�ε

n−1∏
i=1

(
1 + ‖[κk,i ]−‖C(∂�k )diam �k

)
τk(x) ∀x ∈ �ε,

that allows to estimate vk on any neighborhood of �. �

4 Uniqueness

In this section we will prove the following uniqueness result.

Theorem 4.1 If (u, v) is a solution of system (1)–(2), in the sense of Theorem 3.1,
then v is given by (10) and u ≡ d in �v f := {x ∈ � : v f (x) > 0}.

The techniques used in this section come essentially from three papers,
[4, 12, 21]. In particular, functional � below is the “stationary” version of the
Lagrangian L introduced by Prigozhin in [21] in order to study the evolving shape
of a sandpile. The idea of linking solutions of system (1)–(2) and saddle points
of � also comes from his work. Moreover, Proposition 4.5 is the generalization
to the n-dimensional case of the representation formula given in the plane by the
first two authors of this paper in [4]. Finally, Proposition 4.6 is a modification of
([12] Proposition 7.1, step 6.); actually, Evans and Gangbo prove there the van-
ishing property of the transport density a at the ends of transport rays, which is
the analogue of the vanishing of our v f on � in the different framework of the
Monge–Kantorovich mass transfer problem.

In order to prove Theorem 4.1, let us start by considering the lower semicon-
tinuous functional � : H1

0 (�) × L2+(�) → R ∪ {∞} defined by

�(w, r) = −
∫

�

f (x)w(x)dx +
∫

�

r(x)

2

(|Dw(x)|2 − 1
)
dx . (18)

We will first prove the uniqueness of the first component of the solution of system
(1)–(2). More precisely, we will show that if (u, v) is a solution of system (1)–(2),
then u ≡ d in �v f := {x ∈ � : v f (x) > 0}.
Lemma 4.2 If (u, v) is a solution of system (1)–(2), then (u, v) is a saddle point
of �, in the sense that

�(u, r) ≤ �(u, v) ≤ �(w, v) ∀(w, r) ∈ H1
0 (�) × L2+(�).

Proof Since (u, v) is a solution of (1)–(2), then∫
�

v(x)

2

(|Du(x)|2 − 1
)
dx = 0

and ∫
�

r(x)

2

(|Du(x)|2 − 1
)
dx ≤ 0, ∀r ∈ L2+(�).
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Hence, for any r ∈ L2+(�) we have

�(u, v) = −
∫

�

f (x)u(x)dx ≥
−
∫

�

f (x)u(x)dx +
∫

�

r(x)

2

(|Du(x)|2 − 1
)
dx = �(u, r).

(19)

Moreover, for any w ∈ H1
0 (�) we have

∫
�

v(x)
2 |Dw(x) − Du(x)|2dx ≥ 0 and

−
∫

�

f (x)(w(x) − u(x))dx +
∫

�

v(x)〈Du(x), Dw(x) − Du(x)〉dx = 0

as a consequence of the fact that for every φ ∈ C∞
c (�) (actually for every φ ∈

H1
0 (�), including the case φ := w − u),

∫
�

v(x)〈Du(x), Dφ(x)〉dx =
∫

�

f (x)φ(x)dx .

Thus, for any w ∈ H1
0 (�),

�(w, v) = �(u, v) −
∫

�

f (x)(w(x) − u(x))dx

+
∫

�

v(x)〈Du(x), Dw(x) − Du(x)〉dx +
∫

�

v(x)

2
|Dw(x) − Du(x)|2dx

≥ �(u, v). (20)

Collecting together (19) and (20) we get the conclusion. �

Lemma 4.3 If (u, v) is a solution of system (1)–(2), then also (d, v) is a solution
of (1)–(2).

Proof First of all, we claim that u ≡ d in the set spt( f ) as a consequence of
Lemma 4.2. In fact, if we consider the set of functions

K := {w ∈ W 1,∞
0 (�) | ‖Dw‖∞ ≤ 1},

then for any w ∈ K we have∫
�

f (x)w(x)dx ≤
∫

�

f (x)u(x)dx, (21)

because

−
∫

�

f (x)w(x)dx ≥ −
∫

�

f (x)w(x)dx +
∫

�

v(x)

2

(|Dw(x)|2 − 1
)
dx

= �(w, v) ≥ �(u, v) = −
∫

�

f (x)u(x)dx .

On the other hand it is well known that d ∈ K is the largest element of K, mean-
ing that w ≤ d for any w ∈ K. Since f ≥ 0, the maximality of d implies
that

∫
�

f (x)u(x)dx ≤ ∫
�

f (x) d(x)dx . Thus
∫
�

f (x)u(x)dx = ∫
�

f (x)d(x)dx ,
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yielding u ≡ d in the set spt( f ). As an easy consequence of the previous equality
we also get that (d, v) is a saddle point of functional �. Indeed, the coincidence of
the two functions on spt( f ) gives �(d, v) = �(u, v) and then for any w ∈ H1

0 (�)
we have

�(d, v) = �(u, v) ≤ �(w, v).

Moreover, for any choice of r ∈ L2+(�),
∫
�

r(x)
2

(|Dd(x)|2 − 1
)
dx = 0; therefore

�(d, r) = −
∫

�

f (x) d(x)dx = �(d, v).

Now, let us conclude the proof. Consider any φ ∈ C∞
c (�). Since (d, v) is a saddle

point of �, then for any h > 0

�(d, v) ≤ �(d + hφ, v)

= −
∫

�

f (x)
(
d(x) + hφ(x)

)
dx +

∫
�

v(x)

2

(|D(d + hφ
)
(x)|2 − 1

)
dx

= �(d, v) + h

(
−
∫

�

f (x)φ(x)dx +
∫

�

v(x)〈Dd(x), Dφ(x)〉dx

)

+h2

2

∫
�

v(x)|Dφ(x)|2dx,

which gives

h

(
−
∫

�

f (x)φ(x)dx +
∫

�

v(x)〈Dd(x), Dφ(x)〉dx

)

+h2

2

∫
�

v(x)|Dφ(x)|2dx ≥ 0.

Dividing by h and letting h → 0+ we obtain

−
∫

�

f (x)φ(x)dx +
∫

�

v(x)〈Dd(x), Dφ(x)〉dx ≥ 0.

Replacing φ by −φ we also get the opposite inequality. �

Proposition 4.4 If (u, v) is a solution of system (1)–(2), then u ≡ d in the set
{x ∈ �|v f (x) > 0}, where v f is the function defined by (10).

Proof By definition of v f , it is readily seen that

spt(v f ) := {x ∈ �|v f (x) > 0}
= {x ∈ �|∃p ∈ D∗d(x) s.t. [x, x + τ(x)p] ∩ spt( f ) �= ∅}.

Hence, for any y ∈ {x ∈ �|v f (x) > 0} we can find x ∈ spt( f ) such that d(y) =
d(x) − |x − y|. Now, u ≡ d in spt( f )—as shown in the proof of Lemma 4.3—
u is 1-Lipschitz continuous and d is the unique viscosity solution of the eikonal
equation with Dirichlet boundary conditions, that is the largest function such that
‖Du‖∞,� ≤ 1 and u = 0 on ∂�. Therefore we conclude

d(y) = d(x) − |x − y| = u(x) − |x − y| ≤ u(y) ≤ d(y),

i.e. u(y) = d(y). �
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Now that we have proven the uniqueness of the first component of the solution
of system (1)–(2), it remains to prove the uniqueness of the second one. In order
to do so, we will first exhibit for such a function a representation formula on the
set � \ �̄ and then analyze its behaviour on �̄.

Proposition 4.5 If (d, v) is a solution of system (1)–(2), then for any z0 ∈ � \ �
and θ ∈ (0, τ (z0)) we have

v(z0) −
n−1∏
i=1

1 − (d(z0) + θ)κi (z0)

1 − d(z0)κi (z0)
v(z0 + θ Dd(z0))

=
∫ θ

0
f (z0 + t Dd(z0))

n−1∏
i=1

1 − (d(z0) + t)κi (z0)

1 − d(z0)κi (z0)
dt (22)

Proof Set en = Dd(z0) and choose e1, . . . , en−1 such that {e1, . . . , en} is a posi-
tively oriented orthonormal basis of R

n and, for any i = 1, . . . , n−1, the vector ei
is a principal direction whose corresponding principal curvature is κi (z0). More-
over, let x0 = z0 + θ Dd(z0), with θ ∈ (0, τ (z0)), and fix r > 0 sufficiently small
such that S0(r) := {y ∈ R

n||y − x0| ≤ r, 〈y − x0, en〉 = 0} ⊂ � \ �̄ and for any
y ∈ S0(r) we have 〈Dd(y), en〉 > 0. Finally, denote by Si (r), i = 1, 2, the sets

S1(r) :=
{

y − θ Dd(y)

〈Dd(y), en〉
∣∣∣y ∈ S0(r)

}

S2(r) :=
{

y − t Dd(y)

〈Dd(y), en〉
∣∣∣|y − x0| = r, 〈y − x0, en〉 = 0, t ∈ [0, θ ]

}
.

and let D(r) be the set enclosed by S0(r) ∪ S1(r) ∪ S2(r). So,

D(r) =
{

y − t Dd(y)

〈Dd(y), en〉
∣∣∣ y ∈ S0(r), t ∈ [0, θ ]

}
⊂ � \ �

is set with piecewise regular boundary, because of the regularity of d . For ε > 0,
let us define the function

ϕε(x) = ψε(dr (x)), x ∈ �,

where ψε(t) = 0 if t ≤ 0, ψε(t) = t/ε if 0 < t < ε, ψε(t) = 1 if t ≥ ε, and dr is
the signed distance function from ∂ D(r). Choosing ϕε as test function and letting
ε → 0+, we ontain∫

D(r)

f (x)dx = −
∫

∂ D(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x), (23)

where ν(x) is the outward unit normal to ∂ D(r). Now,∫
∂ D(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

=
∫

S0(r)∪S1(r)∪S2(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

=
∫

S0(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

+
∫

S1(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)
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because by construction ν(x) is orthogonal to Dd(x) on S2(r). Moreover,∫
S0(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

=
∫

S0(r)

v(x)〈Dd(x), en〉 dHn−1(x). (24)

Since Dd and v are continuous functions in S0(r) and Dd(x) → en as x → x0,
then

lim
r→0

1

ωn−1rn−1

∫
S0(r)

v(x)〈Dd(x), en〉 dHn−1(x) = v(x0), (25)

where ωn−1 is the area of the unit ball in R
n−1. On the other hand,∫

S1(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

= −
∫

S0(r)

v(g(x))〈Dd(g(x)), en〉|Jg(x)| dHn−1(x), (26)

where

g(x) = x − θ Dd(x)

〈Dd(x), en〉 , x ∈ S0(r)

and |Jg(x)| is the modulus of the determinant of the Jacobian matrix of g

Jg(x) = I + θ

〈Dd(x), en〉
n−1∑
i=1

κi (x)

1 − d(x)κi (x)
ei (x) ⊗ ei (x).

Since limx→x0 g(x) = g(x0) = x0 − θen = z0 and

lim
x→x0

Jg(x) = I +
n−1∑
i=1

θκi (z0)

1 − d(z0)κi (z0)
ei ⊗ ei ,

we have

lim
x→x0

|Jg(x)| =
n−1∏
i=1

(
1 + θκi (z0)

1 − d(z0)κi (z0)

)
,

and then we conclude

lim
r→0

1

ωn−1rn−1

∫
S1(r)

v(x)〈Dd(x), ν(x)〉 dHn−1(x)

= − v(z0)

n−1∏
i=1

(
1 + θκi (z0)

1 − d(z0)κi (z0)

)
. (27)

So now it only remains to estimate limr→0
1

ωn−1rn−1

∫
D(r)

f (x)dx . Exploiting

the structure of the set D(r), it is easy to see that we can write
∫

D(r)

f (x)dx =
∫ θ

0
dt
∫

St (r)

f (z) dHn−1(z) (28)
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where

St (r) :=
{

y − t

〈Dd(y), en〉 Dd(y)|y ∈ S1(r)

}
.

Hence, using the previous computations and the continuity of f we finally find

lim
r→0

1

ωn−1rn−1

∫
D(r)

f (x)dx

=
∫ θ

0
f (x0 − t Dd(x0))

n−1∏
i=1

(
1 + tκi (x0)

1 − d(x0)κi (x0)

)
dt. (29)

Collecting together (25), (27) and (29) and recalling identity (23), we can write

∫ θ

0
f (x0 − t Dd(x0))

n−1∏
i=1

(
1 + tκi (x0)

1 − d(x0)κi (x0)

)
dt

= −v(x0) + v(z0)

n−1∏
i=1

(
1 + θκi (z0)

1 − d(z0)κi (z0)

)
. (30)

In order to represent (30) in the form (22) we only have to divide both sides of
(30) by

n−1∏
i=1

(
1 + θκi (x0)

1 − d(x0)κi (x0)

)

and make a change of variable in the right-hand integral. Indeed, recalling that
x0 = z0 + θ Dd(z0), Dd(x0) = Dd(z0) and κi (x0) = κi (z0), the above computa-
tion gives

∫ θ

0
f (z0 + (θ − t)Dd(z0))

n−1∏
i=1

(
1 − (d(z0) + θ − t)κi (z0)

1 − d(z0)κi (z0)

)
dt

= −v(z0 + θ Dd(z0)) + v(z0)

n−1∏
i=1

(
1 − (d(z0) + θ)κi (z0)

1 − d(z0)κi (z0)

)
. (31)

Now the representation formula (22) follows as soon as we replace the variable t
by θ − s in the above right-hand integral. �

Proposition 4.6 If (d, v) is a solution of system (1)–(2), then v ≡ 0 on �.

Proof Since v is a continuous function, it suffices to prove that v ≡ 0 on �. So,
let us fix any x0 ∈ � and choose ε > 0 sufficiently small such that Bε(x0) ⊂ �.
Then, for any x ∈ B1(0) set

{
dε(x) := d(x0 + εx) − d(x0)

ε
vε(x) := v(x0 + εx), fε(x) := f (x0 + εx).

(32)
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By construction, for any ε > 0 as above dε(0) = 0 and |Ddε(x)| = |Dd(x0 +
εx)| = 1 almost everywhere in B1(0). Hence, there exist a sequence {ε j } j∈N,
ε j → 0+ and a 1-Lipschitz function d0 : B1(0) → R such that dε j → d0 in
the uniform topology in B1(0). Moreover, being |Ddε j (x)| = 1 in the viscosity
sense in B1(0), by [2, Proposition 2.2] also |Dd0(x)| = 1 in the viscosity sense in
B1(0), which gives |Dd0(x)| = 1 almost everywhere. Thus,

lim
j→∞

∫
B1(0)

|Ddε j (x)|2dx = ωn =
∫

B1(0)

|Dd0(x)|2dx,

which implies, together with the uniform convergence of dε j to d0, the conver-
gence of Ddε j to Dd0 in the L2 topology.

Also, D2dε j (x) = ε j D2d(x0 + ε j x) ≤ ε j C in the sense of distributions,
because the function d is a semiconcave function with linear modulus in Bε(x0) ⊂
�. Therefore, d0 is a concave function. Finally, the functions vε j and fε j defined
above uniformly converge to v(x0) and f (x0) respectively and the pair (dε j , vε j )
solves

−div(vε j Ddε j ) = ε j fε j in B1(0)

in the weak sense, because (d, v) solves (1)–(2). Passing to the limit as j → ∞
we then obtain that d0 is a weak solution of

−div (v(x0)Dd0(x)) = 0 x ∈ B1(0).

Now, if v(x0) �= 0, the previous equation turns out to be the classical Laplace
equation

�d0 = 0 in B1(0)

and it is well-known that any weak Lipschitz solution in the ball of this equation is
actually analytic. On the other hand, d0 cannot be differentiable in x = 0, because
d0 is the ‘blow up’ of the distance function around a singular point x0. Hence
v(x0) = 0 and the proof is complete. �

The last two propositions allow us to prove Theorem 4.1 as a simple corollary.
Indeed, we already know by Proposition 4.4 that if (u, v) is a solution of system
(1)–(2), then u ≡ d on the set �v f = {v f > 0}. So it only remains to prove that
v ≡ v f in �, where v f is given by (10). But Proposition 4.6 guarantees that v ≡ 0
in �̄, while Proposition 4.5 tells us that for any z0 ∈ � \ �̄ and θ ∈ (0, τ (z0))

v(z0) −
n−1∏
i=1

1 − (d(z0) + θ)κi (z0)

1 − d(z0)κi (z0)
v(z0 + θ Dd(z0))

=
∫ θ

0
f (z0 + t Dd(z0))

n−1∏
i=1

1 − (d(z0) + t)κi (z0)

1 − d(z0)κi (z0)
dt.

Hence, letting θ → τ(z0)
− and using the continuity of v we obtain the coinci-

dence of v and v f at the point z0.



18 P. Cannarsa et al.

5 Minimization of integral functionals

In this section we shall prove the existence of minimizers in W 1,1
0 (�) for the

integral functional

J0(u) =
∫

�

[h(|Du|) − f (x)u]dx, u ∈ W 1,1
0 (�), (33)

where f ∈ L∞(�) is a nonnegative function and h : [0,+∞) → [0,+∞] is a
lower semicontinuous function (possibly with extended values) satisfying

h(R) = 0, h(s) ≥ max{0,�(s − R)} for some constants R, � > 0. (34)

More precisely, under suitable assumptions on the domain �, the function
u�(x) = R d(x), x ∈ �, is a minimizer of J0. As remarked in the Introduc-
tion, the set � need not to be convex, as required in previous results (see [8, 24]).
The main assumption on � is that it can be approximated, in the Hausdorff metric,
by smooth domains satisfying a suitable uniform bound on the mean curvature of
their boundaries (see Definition 5.1 below). We shall show in Proposition 5.2 that
such class of domains contains Federer’s sets with positive reach (see [14]).

The link with the system of PDE (1)–(2) is that (11) is the Euler–Lagrange
equation associated to the integral functional J0 in u�, provided that the solution
v f satisfies a suitable upper bound. This bound can be obtained using the ex-
plicit representation (10) of v f and the bounds on the mean curvature of ∂� (see
Proposition 5.9 below).

Definition 5.1 We say that a set � is a smooth K -admissible domain, K ∈ R, if it
is a connected open bounded subset of R

n with C2 boundary, such that the mean
curvature of ∂� is bounded below by K , that is

H(y) := 1

n − 1

n−1∑
i=1

κi (y) ≥ K ∀y ∈ ∂�.

A set � ⊂ R
n is a K -admissible domain if it is a connected open bounded subset

of R
n and there exists a sequence (� j ) j , with � j smooth K j -admissible domain,

such that lim j K j = K and the Hausdorff distance dH (� j , �) tends to 0 as j →
+∞.

We remark that every connected bounded open set � ⊂ R
n with C2 boundary

is a K -admissible smooth domain for every K satisfying

K ≤ min
y∈∂�

H(y).

Furthermore, it is readily seen that every convex domain � ⊂ R
n is a K -

admissible domain, for every K ≤ 0. Namely, every convex domain can be ap-
proximated, in the Hausdorff topology, by smooth (C∞) convex domains (see [22]
Sect. 3.3). Then, it is enough to observe that a smooth convex domain satisfies
κi (y) ≥ 0 for every i and every y ∈ ∂�.

Another class of possibly nonsmooth and nonconvex admissible domains is
given by connected domains satisfying a uniform exterior sphere condition. These
sets are also known in literature as sets of positive reach (see [14]).
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Proposition 5.2 Let � ⊂ R
n be a connected bounded open set satisfying a

uniform exterior sphere condition for some radius R ∈ (0, +∞]. Then � is a
(−16/R)-admissible domain.

Proof Let us denote by d�(x), x ∈ R
n , the distance of x to � and set

�R/2 := {x ∈ R
n : d�(x) < R/2}.

We will first prove that d�(x) + 4
R |x |2 is convex locally in �R/2 \ �. It is

well known (see for instance [15]) that the exterior sphere condition implies the
uniqueness of the projection of any point x ∈ �R/2 \ � onto the set �, so that the
gradient Dd�(x) is well defined. Consider any x, y ∈ �R/2 \�. Suppose first that
d�(x) = d�(y) =: ρ. By the exterior sphere condition, we have that

x /∈ B(y + (R − ρ)Dd�(y), R − ρ) and y /∈ B(x + (R − ρ)Dd�(x), R − ρ).

Hence,
|x − y|2 − 2〈(R − ρ)Dd�(y), x − y〉 ≥ 0

and
|x − y|2 + 2〈(R − ρ)Dd�(x), x − y〉 ≥ 0 .

Adding the above inequalities we obtain

〈Dd�(x) − Dd�(y), x − y〉 ≥ − 1

R − ρ
|x − y|2 ≥ − 2

R
|x − y|2. (35)

Suppose, on the other hand, that d�(x) �= d�(y)—say d�(x) > d�(y)—and
consider the point z := x − (d�(x) − d�(y))Dd�(x). It is clear that z ∈ �R/2,
d�(z) = d�(y) and Dd�(z) = Dd�(x). Then, by (35), we have

〈Dd�(x) − Dd�(y), z − y〉 ≥ − 2

R
|z − y|2.

Writing the previous inequality in terms of x and using the Lipschitz properties of
the distance function d�, we finally obtain

〈Dd�(x) − Dd�(y), x − y〉 ≥ (d�(x) − d�(y))〈Dd�(x) − Dd�(y), Dd�(x)〉
− 2

R
|x − y|2 − 2

R
(d�(x) − d�(y))2 + 4

R
(d�(x) − d�(y))〈Dd�(x), x − y〉

≥ − 8

R
|x − y|2.

This actually proves that d�(x) + 4
R |x |2 is convex locally in �R/2 \ �.

Let us now construct the approximating sequence of (−16/R)-admissible do-
mains. For any 0 < σ < R

8 and 0 < ε < σ
2 , consider the sets

�ε
σ := {x ∈ R

n : (ρε ∗ b�)(x) < σ },
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where b� is the signed distance b�(x) := d�(x) − dRn\�(x) and ρε is the family
of mollifiers defined by

ρε(x) = 1

εn
ρ
( x

ε

)
,

ρ(y) :=
{( ∫

B(0,1)
e
− 1

1−|z|2 dz
)−1e

− 1
1−|y|2 |y| ≤ 1

0 |y| > 1.

Note that our choice of σ and ε assures that �ε
σ ⊂ �R/2. Set dε := ρε ∗ b�.

Then dε ∈ C∞(Rn) and dε, Ddε uniformly converge to b�, Db� on any compact
subset of R

n and of �R/2 \ �, respectively, as ε → 0. This actually gives that

∂�ε
σ := {x ∈ R

n : (ρε ∗ b�)(x) = σ }
are C∞ boundaries for any 0 < σ < R/8 and ε < σ/2, converging to ∂�
as σ → 0. We also claim that the above conditions on σ and ε guarantee that
also ∂�ε

σ ⊂ �R/2−ε \ �̄ε. Indeed, there exists ε(σ ) such that for any ε < ε(σ )

|dε(x) − b�(x)| < σ/2, for any x ∈ �R/2 \ �̄. Hence, for any x ∈ ∂�ε
σ

b�(x) = (b�(x) − dε(x)) + dε(x) <
σ

2
+ σ = 3

2
σ <

R

2
− ε

and

b�(x) = dε(x) − (dε(x) − b�(x)) > σ − σ

2
= 1

2
σ > ε,

which means that b�(x) = d�(x) and ε < d�(x) < R
2 − ε. As a consequence of

the inclusion ∂�ε
σ ⊂ �R/2−ε \ �ε we also obtain a bound from below for Ddε

on ∂�ε
σ , provided σ (and then ε) is small enough. Indeed, since Ddε uniformly

converges to Db� on any compact subset of �R/2 \ � as ε → 0, we can take
σ so small that for ε < min{σ/2, ε(σ )} we have |Ddε(x) − Db�(x)| < 1/2 for
any x ∈ ∂�ε

σ and then |Ddε(x)| > 1/2 for any x ∈ ∂�ε
σ . Let us now prove

that the maps dε are semiconvex in �R/2−ε \ �ε with constant 4/R. Indeed, since
d�(x)+ 4

R |x |2 is convex locally on �R/2 \�, our choice of ε gives that, in the set
�R/2−ε \ �ε,

ρε ∗
(

b� + 4

R
| · |2

)
= ρε ∗

(
d� + 4

R
| · |2

)
= ρε ∗ d� + 4

R
ρε ∗ | · |2

is still convex locally. Being also the map ρε ∗
(

d� + 4
R | · |2

)
regular, we deduce

0 ≤ D2
(

ρε ∗ (d� + 4

R
| · |2)

)
= D2dε + 8

R
I, (36)

which is the desired semiconvex property of dε. In order to complete the proof,
it suffices to look at the curvature matrix of ∂�ε

σ . As a matter of fact, for any
x ∈ ∂�ε

σ the outer unit normal of ∂�ε
σ at x is given by νε

σ (x) = ∇dε(x)
|∇dε(x)| . Hence,
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the principal curvatures of ∂�ε
σ at x are the eigenvalues of the matrix D(

∇dε(x)
|∇dε(x)| )

restricted to the subspace V ε orthogonal to ∇dε(x). But

D

( ∇dε(x)

|∇dε(x)|
)

= 1

|∇dε(x)| D2dε(x) − 1

|∇dε(x)|3 D2dε(x)∇dε(x) ⊗ ∇dε(x),

so that

D

( ∇dε(x)

|∇dε(x)|
) ∣∣∣

V ε
= 1

|∇dε(x)| D2dε(x)

∣∣∣
V ε

.

Thus, recalling that |∇dε(x)| > 1/2 and using (36), we conclude that any principal
curvature of ∂�ε

σ at x is bounded from below by − 16
R , yielding

H ε
σ (x) ≥ −16

R
,

for any x ∈ ∂�ε
σ . �

Our main existence result concerns integral functionals more general than the
one defined in (33). In the following, r� will denote the inradius of the set �, that
is, the supremum of the radii of the balls contained in �.

Theorem 5.3 Let h : [0, +∞) → [0, +∞] be a lower semicontinuous function
satisfying (34), let � ⊂ R

n be a K -admissible domain, and let g : � × R → R be
a measurable function, Lipschitz continuous with respect to the second variable,
satisfying

g(·, 0) ∈ L1(�), (37)

0 ≤ Du g(x, u) ≤ L , a.e. (x, u) ∈ � × R. (38)

If L · c(K , r�) ≤ �, where

c(K , r�) :=
{

1−(1−Kr�)n

nK , if K �= 0,

r�, if K = 0,
(39)

then the function u�(x) = R d(x), x ∈ �, is a minimizer of the functional

J (u) =
∫

�

[h(|Du|) − g(x, u)]dx (40)

in W 1,1
0 (�).

Remark 5.4 If g satisfies −L ≤ Du g(x, u) ≤ 0 for a.e. (x, u) ∈ � × R, then
Theorem 5.3 still holds with u�(x) = −R d(x).

Remark 5.5 If � ⊂ R
n is a convex domain, then condition L c(K , r�) ≤ � is

certainly satisfied provided that

Lr� ≤ �. (41)

Namely, it is enough to observe that a convex domain is a 0-admissible domain,
and that c(0, r�) = r�. Condition (41) was first introduced in [8] in the case
g(x, u) = u. In [6] it was proven that, if (41) does not hold, then the functional J
need not have minimizers in W 1,1

0 (�).
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Example 5.6 The assumptions of Theorem 5.3 for the existence of a minimizer
of J are optimal in the following sense. Let h(s) = max{0,�(s − R)} for some
positive constants � and R, let g(x, u) = u and let � = Br (0) ⊂ R

n . Then
r� = r , and � is a (1/r)-admissible domain.

Since c(1/r, r) = r/n, Theorem 5.3 states that the function u�(x) = R d(x)
is a minimizer to J provided that r ≤ n�. This condition is optimal: indeed, we
are going to show that the functional J is not even bounded from below if r > n�.
Let us define the sequence of functions in W 1,1

0 (�)

uk(x) =
{

k(r − |x |), if n� < |x | < r ,

R(r − |x |), if |x | ≤ n�,
k ∈ N.

A straightforward computation shows that, for k ≥ R,

J (uk) = ωn

n + 1
[ψ(n�) − ψ(r)] k + A,

where ωn is the n-dimensional Lebesgue measure of the unit ball of R
n , A is a

constant independent of k, and ψ(ρ) = ρn+1 − (n + 1)�ρn . Since the function ψ
is strictly increasing for ρ ≥ n�, and r > n�, we have that ψ(n�) − ψ(r) < 0,
hence lim

k→+∞ J (uk) = −∞.

The remaining part of this section will be devoted to the proof of Theorem 5.3.
The relation between the existence of solutions to (1)–(2), given by

Theorem 3.1, and the existence of minimizers of J , can be better understood start-
ing from the following particular case of Theorem 5.3.

Proposition 5.7 Let h : [0, +∞) → [0,+∞] be a lower semicontinuous func-
tion satisfying (34), let � ⊂ R

n be a smooth K -admissible domain, and let
f ∈ L∞(�) be a nonnegative Lipschitz continuous function.

If ‖ f ‖∞,� c(K , r�) ≤ �, then the function u�(x) = R d(x) is a minimizer in
W 1,1

0 (�) of the functional J0 defined in (33).

Proof Let v f be the continuous function defined in (10). We claim that the fol-
lowing bound on v f holds true:

0 ≤ v f (x) ≤ ‖ f ‖∞,� c(K , r�), ∀x ∈ �. (42)

In order not to interrupt the main flow of the arguments, we postpone the proof of
(42) to Proposition 5.9 below.

By assumption, we clearly have

0 ≤ v f (x) ≤ �,∀x ∈ �. (43)

Let u ∈ W 1,1
0 (�). Since h satisfies (34) and v f satisfies (43), we have that

h(|Du(x)|) ≥ v f (x)(|Du(x)| − R)

≥ h(|Du�(x)|) + v f (x)〈Dd(x), Du(x) − Du�(x)〉,
hence

J0(u) ≥ J0(u�) + δ,
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where

δ =
∫

�

[
v f (x)〈Dd(x), Du(x) − Du�(x)〉 − f (x)(u(x) − u�(x))

]
dx .

Since v f is bounded, by a density argument the equation (11) holds for every

φ ∈ W 1,1
0 (�). Choosing φ = u − u�, we obtain that δ vanishes, so that J0(u) ≥

J0(u�). Since u was an arbitrary function in W 1,1
0 (�), we have proven that u� is

a minimizer of J0 in W 1,1
0 (�). �

The estimate (42) used in the proof of Proposition 5.7 is an easy consequence
of the following lemma.

Lemma 5.8 Let ν : [0, r ] → R be the function defined by

ν(t) :=
∫ r

t

n−1∏
i=1

1 − sκi

1 − tκi
ds, (44)

where (κ1, . . . , κn−1) belongs to the set

C :=

(σ1, . . . , σn−1) ∈ R

n−1; σi ≤ 1

r
∀i,

n−1∑
j=1

σ j ≥ (n − 1)K




for some constant K ≤ 1/r . Then, for every t ∈ [0, r ],

0 ≤ ν(t) ≤ ν0(t) :=
{

(1−t K )n−(1−r K )n

nK (1−t K )n−1 , if K �= 0,

r − t, if K = 0.
(45)

As a consequence, ν(t) ≤ c(K , r) for every t ∈ [0, r ], where c(K , r) is the con-
stant defined in (39).

Proof Since K ≤ 1/r , the closed set C is not empty. Moreover, given a point
(σ1, . . . , σn−1) ∈ C , for every i one has

1

r
≥ σi =

∑
j

σ j −
∑
j �=i

σ j ≥ (n − 1)K − n − 2

r
,

so that C is a nonempty compact subset of R
n−1.

Let us consider the function ϕt : C → R defined by

ϕt (σ1, . . . , σn−1) =
n−1∑
j=1

σ j

1 − tσ j
,

where t ∈ [0, r) plays the role of a parameter. Since ∂ϕt

∂σ j
= (1 − tσ j )

−2 > 0,

ϕt does not have critical points in the interior of C . Moreover, it is clear that ϕt

attains its minimum on the constraint∑
j

σ j = (n − 1)K .
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Using the Lagrange multipliers rule we get that the minimum is attained at the
point σ1 = · · · = σn−1 = K , hence

min
C

ϕt = (n − 1)K

1 − t K
. (46)

The function ν : [0, r ] → R, defined in (44), is differentiable in [0, r). More-
over, 0 ≤ ν(t) ≤ ∫ r

t (1 + r [k]−∞)n−1 ds = (1 + r [k]−∞)n−1(r − t), where

[k]−∞ := max{[ki ]− : i = {1, . . . , n − 1}, (k1, . . . , kn−1) ∈ C}.
Hence limt→r ν(t) = 0 = ν(r). Let us compute the derivative of ν: for every
t ∈ [0, r) we have

ν′(t) = −1 +

n−1∑

j=1

κ j

1 − tκ j


 ν(t) = −1 + ϕt (κ1, . . . , κn−1) ν(t).

From estimate (46) we deduce that ν satisfies the differential inequality{
ν′(t) ≥ −1 + (n−1)K

1−t K ν(t), t ∈ [0, r ],
ν(r) = 0.

(47)

It is easily seen that the function ν0 : [0, r ] → R, defined in (45), is the solution
to the Cauchy problem

ν′
0(t) = −1 + (n−1)K

1−t K ν0(t), t ∈ [0, r ],
ν0(r) = 0.

Since ν satisfies the differential inequality (47), we have

0 ≤ ν(t) ≤ ν0(t) ∀t ∈ [0, r ].
Moreover,

ν′
0(t) = −1

n

[
(n − 1)

(1 − r K )n

(1 − t K )n
+ 1

]
< 0 ∀t ∈ [0, r ],

hence we conclude that

0 ≤ ν(t) ≤ max
[0,r ]

ν0 = ν0(0) = c(K , r),

and the lemma is proven. �

Proposition 5.9 Let � be a smooth K -admissible domain, and let f ≥ 0 be a
nonnegative bounded continuous function in �. Then the function v f defined in
(10) satisfies the bound

0 ≤ v f (x) ≤ ‖ f ‖∞,� cK (d(x), τ (x)), ∀x ∈ �, (48)

where

cK (d, τ ) :=
{

(1−d K )n−(1−(d+τ)K )n

nK (1−d K )n−1 , if K �= 0,

τ, if K = 0.
(49)

In particular, (42) holds.
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Proof From the explicit representation (10) of v f , we have that

0 ≤ v f (x) ≤ ‖ f ‖∞,�

∫ d(x)+τ(x)

d(x)

n−1∏
i=1

1 − sκi (x)

1 − d(x)κi (x)
ds.

The conclusion now follows from Lemma 5.8. �

As a second step toward the proof of Theorem 5.3, we prove the analogous of
Proposition 5.7 without the regularity assumptions on ∂� and f .

Proposition 5.10 The conclusions of Proposition 5.7 still hold under the assump-
tions of � ⊂ R

n be a K -admissible domain, and f ∈ L∞(�) be a nonnegative
function.

Proof For j ∈ N, let � j be a smooth K j -admissible domain, such that the se-
quence (� j ) converges to � in the Hausdorff topology, and lim j K j = K . Let us
extend the functions u� j (x) := R d� j (x) and u�(x) := R d(x) to zero outside
� j and � respectively. (Here d� j denotes the distance function from the bound-
ary of � j .) We extend in the same way the function f outside �. Let B be a ball
containing � and all the � j , and let ( f j ) j be a sequence of Lipschitz continuous
functions on B satisfying

lim
j

‖ f j − f ‖L1(B) = 0, 0 ≤ f j (x) ≤ ‖ f ‖∞ ∀x ∈ B.

Let us define

ε j = c(K j , r� j )

c(K , r�)
− 1, j ∈ N, (50)

where c(K , r) is the quantity defined in (39). Since (� j ) converges to � in the
Hausdorff topology, we have that r� j → r� for j → +∞, hence lim j ε j = 0.
Let us define the functions

h j (s) = (1 + ε j )h(s), s ≥ 0.

From the assumption (34) on h we deduce that, for every j ,

h j (R) = 0, h j (s) ≥ max{0, (1 + ε j )�(s − R)}. (51)

From the definition (50) of ε j , and the fact that ‖ f j‖∞ ≤ ‖ f ‖∞, it is straightfor-
ward to verify that

‖ f j‖∞c(K j , r� j ) ≤ ‖ f ‖∞(1 + ε j )c(K , r�) ≤ (1 + ε j )� . (52)

From Proposition 5.7 we conclude that u� j = R d� j is a minimizer of the func-
tional

J j (u) =
∫

� j

[
h j (|Du(x)|) − f j (x)u(x)

]
dx
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in W 1,1
0 (� j ). We recall that the sequence (u� j ) converges uniformly to u� in B.

Since ( f j ) converges to f in L1(B) we have that

lim
j

J j (u� j ) = − lim
j

∫
� j

f j (x)u� j (x)dx = − lim
j

∫
B

f j (x)u� j (x)dx

= −
∫

B
f (x)u�(x)dx = J0(u�). (53)

On the other hand, if u ∈ W 1,1
0 (�) and if we set u = 0 outside �, we obtain

J0(u) =
∫

�

[h(|Du|) − f (x)u] dx = lim
j

∫
� j

[
h j (|Du|) − f j (x)u

]
dx

= lim
j

J j (u) ≥ lim
j

J j (u� j ) = J0(u�).

Hence u� is a minimizer of J0 in W 1,1
0 (�), and the proof is complete. �

We are now in a position to conclude the proof of Theorem 5.3.
Proof of Theorem 5.3 Let us fix u ∈ W 1,1

0 (�), and prove that J (u) ≥ J (u�). Let
us define the function

f (x) :=
{

g(x,u(x))−g(x,u�(x))
u(x)−u�(x)

, if u(x) �= u�(x),

0, if u(x) = u�(x).

From the very definition of f and (38) we have that

g(x, u(x))−g(x, u�(x)) = f (x)(u(x)−u�(x)), 0 ≤ f (x) ≤ L , a.e. x ∈ �.

From Proposition 5.10 we have that u� is a minimizer of the functional

J0(u) =
∫

�

[h(|Du(x)|) − f (x)u(x)] dx

in W 1,1
0 (�). Finally, we have that

J (u) = J0(u) +
∫

�

[ f (x)u�(x) − g(x, u�(x))] dx

≥ J0(u�) +
∫

�

[ f (x)u�(x) − g(x, u�(x))] dx = J (u�),

and the proof is complete.
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