The existence of a one parameter family of trisecants to the Kummer variety of an indecomposable principally polarized abelian varietiy characterizes Jacobians. This result was first proved by Gunning in under additional hypotheses. Then Welters removed the additional hypotheses and considered the degenerate cases. In this note we provide a short geometrical argument for the inflectionary case

Marini, G. (1999). A geometrical argument for a theorem of G. E. Welters. MATHEMATISCHE ZEITSCHRIFT, 232(3), 505-509.

A geometrical argument for a theorem of G. E. Welters

MARINI, GIAMBATTISTA
1999-01-01

Abstract

The existence of a one parameter family of trisecants to the Kummer variety of an indecomposable principally polarized abelian varietiy characterizes Jacobians. This result was first proved by Gunning in under additional hypotheses. Then Welters removed the additional hypotheses and considered the degenerate cases. In this note we provide a short geometrical argument for the inflectionary case
1999
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
VARIETIES
Marini, G. (1999). A geometrical argument for a theorem of G. E. Welters. MATHEMATISCHE ZEITSCHRIFT, 232(3), 505-509.
Marini, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
A geometrical argument for a theorem of G. E. Welters.pdf

accesso aperto

Descrizione: Articolo
Dimensione 67.21 kB
Formato Adobe PDF
67.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/55537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact