
Math. Z. 232, 505–509 (1999)

c© Springer-Verlag 1999

A geometrical argument for a theorem
of G. E. Welters

Giambattista Marini

Dipartimento di matematica, II Università di Roma “Tor Vergata”, Via della Ricerca
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The existence of a one parameter family of trisecants to the Kummer variety
of an indecomposable principally polarized abelian variety characterizes
Jacobians. This result was first proved by Gunning in [G] under additional
hypotheses. Then Welters removed the additional hypotheses and considered
the degenerate cases, see [W1] and [W2]. In this note we provide a short
geometrical argument for the inflectionary case.

Theorem (Welters).Let (X, [Θ]) be an indecomposable principally pola-
rized abelian variety. LetY be the Artinian subscheme ofX of length 3
supported at 0 defined as the image ofSpec C[ε]/(ε3) in X via the im-
mersion ε 7→ ε2D1 + ε22D2 , whereD1 6= 0. Denote byK : X → |2Θ|
the Kummer morphism. Assume that the algebraic subset

V = { 2u ∈ X | u + Y ⊂ K−1(l) for some linel ⊂ |2Θ| } ,

has positive dimension. ThenV is a smooth irreducible curve through zero,
and (X, [Θ]) is the polarized Jacobian ofV.

The proof of this theorem is naturally divided in two steps. First one proves
that the endomorphismδ associated with the pair(C, Θ) is a positive
multiple of the identity; hereC is any curve contained inV. Then one proves
that δ is the identity over the flow generated byD1 (thusδ is the identity
and Matsusaka’s criterion applies, moreoverC = V by curve theory). For
the first step we go back to Welters’ homological argument in [W1]. For the
second one we present a geometrical argument. We recall thatδ(x) is, by
definition, the sum inX of the points of the intersectionC.Θx , opportunely
translated in order to haveδ(0) = 0 (namelyδ(x) = sumC.(Θx −Θ) ).
We shall use the following remark.
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1 Remark.Assume thatV andW are subvarieties ofX of complementary
dimensions and assume that they intersect transversally at distinct points
p1, ..., pr . If a point x is in a small analytic neighborhood of zero, we
are allowed to number the points of the intersectionV.Wx according to the
numbering of thepi’s. Thus, we can single out the contribution ofpi to the
differential d δ . We shall denote this contribution byd δpi . Let D be a
vector inT0(X) , or better an invariant vector field onX. We claim that, for
d δpi(D) , which is theith-contribution tolimε→0

1
ε sum

(
V.(WεD −W )

)
,

the following holds. If D is tangent toV at pi , then d δpi(D) = D .
If D is tangent toW at pi , then d δpi(D) = 0 . Our claim is a trivial
consequence of the fact that sinceV and W intersect transversally atpi ,
for the computation of the contributionδpi up to its first order, we are
allowed to work with tangent spaces.

Let us go back to the hypothesis of the theorem. The image underK of

the germ of curveu+Y = u+2εD1 +2ε2D2 is the germ of curve
→
ϑ(u+

2εD1 + 2ε2D2) =
→
ϑ(u) + 2εD1

→
ϑ(u) + 2ε2(D2

1 + D2)
→
ϑ(u) mod(ε3) ,

where
→
ϑ := (..., ϑσ, ...) , {ϑσ} is a basis ofH0(X, 2Θ) . The image

germ above, viewed inPH0(X, 2Θ) , is contained in a straight line if and
only if the three terms of degrre 0, 1 and 2 are dependent, thus

2u ∈ V if and only if rank
(→
ϑ(u) D1

→
ϑ(u) (D2

1 + D2)
→
ϑ(u)

) ≤ 2 .

Observe thatV parametrizes inflectionary points of the Kummer variety.
Also, we recall that by a well know degeneration of Fay’s trisecant formula
(e.g. see [W1]),

(?) x ∈ V , x 6= 0 if and only if Θ ∩ Θx ⊂ D1Θ ∪ D1Θx ,

whereD1Θ := Θ ∩ {D1θ = 0} , and θ is a generator ofH0(X, Θ) .

2 Remark (see [W2]).If V has positive dimension at 0, thenV is smooth,
one-dimensional at 0. FurthermoreT0(V ) = 〈D1〉 . To prove this claim,
first observe that the condition

rank
(→
ϑ(u) D1

→
ϑ(u) (D2

1 + D2)
→
ϑ(u)

) ≤ 2

gives rise to natural determinantal equations definingV as a scheme. These
equations are the determinants equated to zero of the minors of order3 of
the matrix above. For computational purpose it is convenient to work with
Λ3H0(X, 2Θ) , so that

V =
{

2u
∣∣ f(u) :=

→
ϑ(u) ∧ D1

→
ϑ(u) ∧ (D2

1 + D2)
→
ϑ(u) = 0

}
.

Furthermore, once for all we recall thatD
→
ϑ(0) = 0 wheneverD is a

derivative of odd order. Note that, in particular,f(0) = 0 , i.e. 0 ∈ V .
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As E ∈ T0(V ) if and only if Ef(0) = 0 , to prove the claim it suffices
to show that

Ef(0) = 0 if and only if E ∈ 〈D1〉 .

We haveEf(0) = E
(→
ϑ ∧ D1

→
ϑ ∧ (D2

1+D2)
→
ϑ

)
(0) =

→
ϑ(0) ∧ ED1

→
ϑ(0)

∧D2
1

→
ϑ(0) which equals zero if and only ifE ∈ 〈D1〉 by Wirtinger’s

theorem stating that the matrix
(→
ϑ(0), ..., EiEj

→
ϑ(0), ...

)
has maximal

rank 1 + 1
2n(n + 1) , where n := dim(X) and {E1, ..., En} is a basis

of T0(X) , provided that(X, [Θ]) is indecomposable. Thus we are done.
We now come to the proof of the theorem.

Proof (of the Theorem). Let C be an irreducible (and reduced) curve
contained inV . We want to prove that the endomorphismδ is the identity.
By hypothesis, the following inclusions hold

(?) Θ ∩ Θx ⊂ D1Θ ∪ D1Θx , ∀x ∈ V, x 6= 0 .

Step 1. The endomorphismδ is a multiple of the identity.
This follows by Welters’ homological argument (see [W1], p. 503), which
we now recall for the sake of completeness. By the inclusions above there
exist algebraic cycles of codimension 2 inX, M ′ and M, such that

Θ ∩ Θx = M ′ + Mx , ∀ x ∈ C , x 6= 0 .

The Mx ’s coverΘ asx moves inC. It follows that the Pontryagin product
of homology classes[M ] ? [C] is c · [Θ], where c is a constant. On the
other hand, sinceΘ−x ∩ Θ = M ′−x + M and since the cycle−C is
homologically equivalent to the cycleC , there exists a constantc′ such
that the Pontryagin product[M ′] ? [C] equalsc′ · [Θ] . Thus [Θ2] ? C =
[M ′ + M ] ? [C] = (c′ + c) · [Θ] = const[Θ2] ? [Θn−1]/(n − 1)! . As Θ
is ample, the map

(
[Θ2] ?

)
: H2(X) −→ H2n−2(X) is an isomorphism.

It follows that [C] = const[Θn−1]/(n − 1)! , so that the endomorphism
δ is a multiple of the identity as claimed. This multiple must be positive
becauseC is effective andΘ is ample.

Step 2. The differentiald δ sends the vector fieldD1 to itself.
Both the inclusions(?) and the endomorphismδ are independent on the
translate of the theta divisor we choose. Denote byD1C the set of points
p of C such thatD1 is tangent toC at p (in particular D1C includes
singular points ofC). Note that D1C is finite. Otherwise, the curveC
would beD1-invariant, thus it would be an elliptic curve, and the image of
δ would be contained in the translate ofC through 0, contradicting thatδ
is a non-zero multiple of the identity. Modulo translations ofΘ we can
assume the following:
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1) C 6⊂ Θ ;
2) 0 ∈ Θsmooth ;
3) D1 6∈ T0(Θ) ;
4) C ∩ Θsing is empty;
5) D1C ∩ D1Θ is empty.
Indeed, in order to find a translatẽΘ := Θ−x satisfying 1, 2, 3, 4, 5, it

suffices to require that the pointx is in

Θsmooth −
(

∆
(
(({0} ∪ D1C) × D1Θ) ∪ (C × Θsing)

)

∪ {x ∈ X | C ⊂ Θ−x}
)

,

where∆ is the difference mapC×Θ → X , (p.q) 7→ q−p . We claim that
the set above is not empty. The set∆

(
(({0}∪D1C)×D1Θ)∪(C×Θsing)

)
has at most dimensionn − 2 , thus it does not containΘsmooth (here we
use Ein-Lazarsfeld’s theorem on Arbarello-De Concini’s conjecture stating
that dimΘsing ≤ n − 3 , cf. [EL]). If the set A := {x ∈ X|C ⊂ Θ−x}
has dimensionn − 1 , the inverse image∆−1(A) is C × Θ . In fact, the
productC × Θ is irreducible and the fiber∆−1(x) has positive dimension
for all x ∈ A (as C ⊂ Θ−x , C + x ⊂ Θ and ∆−1(x) is the set of pairs
(p, p + x)p∈C ). As a consequence, ifΘ−x meetsC , then it containsC.
This leads to a contradiction. In fact, it would imply that the general translate
of Θ does not meetC. This concludes the proof of our claim.

By remark 2, if C contains zero, then it is smooth at zero andD1 ∈
T0(C) . It follows that if 0 ∈ C , the theta divisor meetsC transversally
at zero by the3th condition. Set now{x1, ... , xr} := Θ ∩ (C − {0}) . As
0 and xi are in Θ , the point xi is in the left hand side of the inclusion
Θ ∩ Θxi ⊂ D1Θ ∪ D1Θxi , so that it must be in the right hand side.
This implies that eitherD1 is in the tangent spaceTxi(Θ) , or D1 is in the
tangent spaceT0(Θ). The latter case does not occur by the3th condition,
thus D1 is in the tangent spaceTxi(Θ) for all i. On the other hand, by the
5th condition, the intersectionD1C ∩D1Θ is empty, so thatD1 6∈ Txi(C) .
In particular, Θ and C meet transversally at thexi’s, hence they meet
transversally (recall that if0 ∈ C, then Θ and C meet transversally at
zero). We now apply remark 1. SinceD1 is in the tangent spaceTxi(Θ)
for all i , then d δxi(D1) = 0 for all i (d δxi has been introduced in
remark 1). If C does not contain 0, it would followd δ(D1) = 0 . This
is impossible because, by the first step,d δ(D1) is a positive multiple of
D1 . On the other hand, again by remark 1,d δ0(D1) equalsD1 because
D1 is tangent toC at zero, and it is transverse to the tangent spaceT0(Θ) .
Taking the sum over all points of the intersectionC.Θ we obtain that the
image ofD1 under the differentiald δ is D1 as claimed.

q.e.d.
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