We consider a variational model that describes the growth of a sandpile on a bounded table under the action of a vertical source. The possible equilibria of such a model solves a boundary value problem for a system of nonlinear partial differential equations that we analyze when the source term is merely integrable. In addition, we study the asymptotic behavior of the dynamical problem showing that the solution converges asymptotically to an equilibrium that we characterize explicitly.

Cannarsa, P., Cardaliaguet, P., Sinestrari, C. (2009). On a differential model for growing sandpiles with non-regular sources. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 343, 656-675 [10.1080/03605300902909966].

On a differential model for growing sandpiles with non-regular sources

CANNARSA, PIERMARCO;SINESTRARI, CARLO
2009-01-01

Abstract

We consider a variational model that describes the growth of a sandpile on a bounded table under the action of a vertical source. The possible equilibria of such a model solves a boundary value problem for a system of nonlinear partial differential equations that we analyze when the source term is merely integrable. In addition, we study the asymptotic behavior of the dynamical problem showing that the solution converges asymptotically to an equilibrium that we characterize explicitly.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
http://dx.doi.org/10.1080/03605300902909966
Cannarsa, P., Cardaliaguet, P., Sinestrari, C. (2009). On a differential model for growing sandpiles with non-regular sources. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 343, 656-675 [10.1080/03605300902909966].
Cannarsa, P; Cardaliaguet, P; Sinestrari, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cpde.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 175.62 kB
Formato Adobe PDF
175.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/55258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact