Biomass reformation is an interesting path for hydrogen production and its use for efficient energy generation. The main target is the fully exploitation of the potential of renewable fuels. To this aim, the coupling a biomass reformer together with a high temperature solid oxide fuel cell (SOFC) stack shows some advantages for the similar operating temperature of the two processes and the internal reforming capability of the SOFC. The latter further allows less stringent composition requirements of the feed gas from a gasifier and internal cooling of the SOFC. In this work, a complete model of a SOFC coupled with a biomass gasifier is used to identify the main effects of the operating conditions on the fuel cell performance. The gasification process has been simulated by an equilibrium model able to compute the reformate composition under different operating conditions, whereas a 3D fluid dynamics simulation (FLUENT) coupled with an external model for the electrochemical reactions has been used to predict the fuel cell performance in terms of electrical response and mass-energy fluxes. A 14 kW integrated SOFC-gasifier system has been analysed with this model to address the response of a planar SOFC as a function of the gasifier operating conditions
Cordiner, S., Feola, M., Mulone, V., Romanelli, F. (2007). Analysis of a SOFC energy generation system fuelled with biomass reformate. APPLIED THERMAL ENGINEERING, 27(4), 738-747 [10.1016/j.applthermaleng.2006.10.015].
Analysis of a SOFC energy generation system fuelled with biomass reformate
CORDINER, STEFANO;FEOLA, MASSIMO;MULONE, VINCENZO;ROMANELLI, FABIO
2007-01-01
Abstract
Biomass reformation is an interesting path for hydrogen production and its use for efficient energy generation. The main target is the fully exploitation of the potential of renewable fuels. To this aim, the coupling a biomass reformer together with a high temperature solid oxide fuel cell (SOFC) stack shows some advantages for the similar operating temperature of the two processes and the internal reforming capability of the SOFC. The latter further allows less stringent composition requirements of the feed gas from a gasifier and internal cooling of the SOFC. In this work, a complete model of a SOFC coupled with a biomass gasifier is used to identify the main effects of the operating conditions on the fuel cell performance. The gasification process has been simulated by an equilibrium model able to compute the reformate composition under different operating conditions, whereas a 3D fluid dynamics simulation (FLUENT) coupled with an external model for the electrochemical reactions has been used to predict the fuel cell performance in terms of electrical response and mass-energy fluxes. A 14 kW integrated SOFC-gasifier system has been analysed with this model to address the response of a planar SOFC as a function of the gasifier operating conditionsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.