Let G^\tau be a connected simply connected semisimple algebraic group, endowed with generalized Sklyanin-Drinfel'd structure of Poisson group; let H^\tau be its dual Poisson group. By means of quantum double construction and dualization via formal Hopf algebras, we construct new quantum groups U_{q,\phi}^M(h) - dual to the multiparameter quantum group U_{q,\phi}^{M'}(g) built upon g^\tau, with g = Lie(G) - which yield infinitesimal quantization of H^\tau and G^\tau ; we study their specializations at roots of 1 (in particular, their classical limits), thus discovering new quantum Frobenius morphisms. The whole description dualize for H^\tau what was known for G^\tau , completing the quantization of the pair (G^\tau,H^\tau) .

Gavarini, F. (1998). Quantization of Poisson groups. PACIFIC JOURNAL OF MATHEMATICS, 186(2), 217-266 [10.2140/pjm.1998.186.217].

Quantization of Poisson groups

GAVARINI, FABIO
1998-12-01

Abstract

Let G^\tau be a connected simply connected semisimple algebraic group, endowed with generalized Sklyanin-Drinfel'd structure of Poisson group; let H^\tau be its dual Poisson group. By means of quantum double construction and dualization via formal Hopf algebras, we construct new quantum groups U_{q,\phi}^M(h) - dual to the multiparameter quantum group U_{q,\phi}^{M'}(g) built upon g^\tau, with g = Lie(G) - which yield infinitesimal quantization of H^\tau and G^\tau ; we study their specializations at roots of 1 (in particular, their classical limits), thus discovering new quantum Frobenius morphisms. The whole description dualize for H^\tau what was known for G^\tau , completing the quantization of the pair (G^\tau,H^\tau) .
dic-1998
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
quantum groups; Poisson groups; Hopf duality
MSC classification: Primary 17B37; Secondary 16W35.
http://pjm.berkeley.edu/pjm/1998/186-2/pjm-v186-n2-p02-p.pdf
Gavarini, F. (1998). Quantization of Poisson groups. PACIFIC JOURNAL OF MATHEMATICS, 186(2), 217-266 [10.2140/pjm.1998.186.217].
Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
qpgroups-ref.pdf

accesso aperto

Descrizione: This is the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 333.82 kB
Formato Adobe PDF
333.82 kB Adobe PDF Visualizza/Apri
qpgroups_STA.pdf

solo utenti autorizzati

Descrizione: This is the Editor's (University of California, Berkeley) printed version
Licenza: Copyright dell'editore
Dimensione 546.07 kB
Formato Adobe PDF
546.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with all bibliographic metadata of the present article
Licenza: Non specificato
Dimensione 131.49 kB
Formato Adobe PDF
131.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with all bibliographic metadata of the present article
Licenza: Non specificato
Dimensione 108.13 kB
Formato Adobe PDF
108.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/51840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact