Let G^\tau be a connected simply connected semisimple algebraic group, endowed with generalized Sklyanin-Drinfel'd structure of Poisson group; let H^\tau be its dual Poisson group. By means of quantum double construction and dualization via formal Hopf algebras, we construct new quantum groups U_{q,\phi}^M(h) - dual to the multiparameter quantum group U_{q,\phi}^{M'}(g) built upon g^\tau, with g = Lie(G) - which yield infinitesimal quantization of H^\tau and G^\tau ; we study their specializations at roots of 1 (in particular, their classical limits), thus discovering new quantum Frobenius morphisms. The whole description dualize for H^\tau what was known for G^\tau , completing the quantization of the pair (G^\tau,H^\tau) .
Gavarini, F. (1998). Quantization of Poisson groups. PACIFIC JOURNAL OF MATHEMATICS, 186(2), 217-266 [10.2140/pjm.1998.186.217].
Quantization of Poisson groups
GAVARINI, FABIO
1998-12-01
Abstract
Let G^\tau be a connected simply connected semisimple algebraic group, endowed with generalized Sklyanin-Drinfel'd structure of Poisson group; let H^\tau be its dual Poisson group. By means of quantum double construction and dualization via formal Hopf algebras, we construct new quantum groups U_{q,\phi}^M(h) - dual to the multiparameter quantum group U_{q,\phi}^{M'}(g) built upon g^\tau, with g = Lie(G) - which yield infinitesimal quantization of H^\tau and G^\tau ; we study their specializations at roots of 1 (in particular, their classical limits), thus discovering new quantum Frobenius morphisms. The whole description dualize for H^\tau what was known for G^\tau , completing the quantization of the pair (G^\tau,H^\tau) .File | Dimensione | Formato | |
---|---|---|---|
qpgroups-ref.pdf
accesso aperto
Descrizione: This is the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
333.82 kB
Formato
Adobe PDF
|
333.82 kB | Adobe PDF | Visualizza/Apri |
qpgroups_STA.pdf
solo utenti autorizzati
Descrizione: This is the Editor's (University of California, Berkeley) printed version
Licenza:
Copyright dell'editore
Dimensione
546.07 kB
Formato
Adobe PDF
|
546.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with all bibliographic metadata of the present article
Licenza:
Non specificato
Dimensione
131.49 kB
Formato
Adobe PDF
|
131.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with all bibliographic metadata of the present article
Licenza:
Non specificato
Dimensione
108.13 kB
Formato
Adobe PDF
|
108.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.