In this paper, a theory of stochastic processes generated by quantum extensions of Laplacians is developed. Representations of the associated heat semigroups are discussed by means of suitable time shifts. In particular the quantum Brownian motion associated to the Levy-Laplacian is obtained as the usual Volterra-Gross Laplacian using the Cesaro Hilbert space as initial space of our process as well as multiplicity space of the associated white noise.

Accardi, L., Barhoumi, A., Ouerdiane, H. (2006). A quantum approach to Laplace operators. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 9(2), 215-248 [10.1142/S0219025706002329].

A quantum approach to Laplace operators

ACCARDI, LUIGI;
2006-06-01

Abstract

In this paper, a theory of stochastic processes generated by quantum extensions of Laplacians is developed. Representations of the associated heat semigroups are discussed by means of suitable time shifts. In particular the quantum Brownian motion associated to the Levy-Laplacian is obtained as the usual Volterra-Gross Laplacian using the Cesaro Hilbert space as initial space of our process as well as multiplicity space of the associated white noise.
giu-2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Cesaro scalar product; Cesaro Hilbert space; distribution; Gel'fand triple; Lie algebra; Markovian semigroup; Wiener process; quantum shift; quantum heat flow; quantum Laplacian; quantum Levy Brownian motion; white noise
Accardi, L., Barhoumi, A., Ouerdiane, H. (2006). A quantum approach to Laplace operators. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 9(2), 215-248 [10.1142/S0219025706002329].
Accardi, L; Barhoumi, A; Ouerdiane, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
A Quantum Approach to Laplacian Operators.pdf

accesso aperto

Dimensione 332.69 kB
Formato Adobe PDF
332.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/45898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact