We are concerned with Grad–Shafranov type equations, describing in dimension N=2 the equilibrium configurations of a plasma in a Tokamak. We obtain a sharp superlinear generalization of the result of Temam (Commun PDE 2:563–585, 1977) about the linear case, implying the first general uniqueness result ever for superlinear free boundary problems arising in plasma physics. Previous general uniqueness results of Berestycki–Brezis (Nonlinear Anal 4(3):415–436, 1980) were concerned with globally Lipschitz nonlinearities. In dimension N≥3 the uniqueness result is new but not sharp, motivating the local analysis of a spikes condensation-quantization phenomenon for superlinear and subcritical singularly perturbed Grad–Shafranov type free boundary problems, implying among other things a converse of the results about spikes condensation in Flucher–Wei (Math Z 228:683–703, 1998) and Wei (Proc Edinb Math Soc 44(3):631–660, 2001). Interestingly enough, in terms of the “physical” global variables, we come up with a concentration-quantization-compactness result sharing the typical features of critical problems (Yamabe N≥3, Liouville N=2) but in a subcritical setting, the singular behavior being induced by a sort of infinite mass limit, in the same spirit of Brezis–Merle (Commun Partial Differ Equ 16:1223–1253, 1991).

Bartolucci, D., Jevnikar, A., Wu, R. (2025). Sharp estimates, uniqueness and spikes condensation for superlinear free boundary problems arising in plasma physics. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(5) [10.1007/s00526-025-03011-8].

Sharp estimates, uniqueness and spikes condensation for superlinear free boundary problems arising in plasma physics

Bartolucci, Daniele
Membro del Collaboration Group
;
Jevnikar, Aleks
Membro del Collaboration Group
;
2025-01-01

Abstract

We are concerned with Grad–Shafranov type equations, describing in dimension N=2 the equilibrium configurations of a plasma in a Tokamak. We obtain a sharp superlinear generalization of the result of Temam (Commun PDE 2:563–585, 1977) about the linear case, implying the first general uniqueness result ever for superlinear free boundary problems arising in plasma physics. Previous general uniqueness results of Berestycki–Brezis (Nonlinear Anal 4(3):415–436, 1980) were concerned with globally Lipschitz nonlinearities. In dimension N≥3 the uniqueness result is new but not sharp, motivating the local analysis of a spikes condensation-quantization phenomenon for superlinear and subcritical singularly perturbed Grad–Shafranov type free boundary problems, implying among other things a converse of the results about spikes condensation in Flucher–Wei (Math Z 228:683–703, 1998) and Wei (Proc Edinb Math Soc 44(3):631–660, 2001). Interestingly enough, in terms of the “physical” global variables, we come up with a concentration-quantization-compactness result sharing the typical features of critical problems (Yamabe N≥3, Liouville N=2) but in a subcritical setting, the singular behavior being induced by a sort of infinite mass limit, in the same spirit of Brezis–Merle (Commun Partial Differ Equ 16:1223–1253, 1991).
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Bartolucci, D., Jevnikar, A., Wu, R. (2025). Sharp estimates, uniqueness and spikes condensation for superlinear free boundary problems arising in plasma physics. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(5) [10.1007/s00526-025-03011-8].
Bartolucci, D; Jevnikar, A; Wu, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/435103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact