A partial cube is a graph G that can be isometrically embedded into a hypercube Qk, with the minimum of such k called the isometric dimension, idim(G), of G. A Fibonacci cubeΓk excludes strings containing 11 from the vertices. Any partial cube G embeds into some Γd, defining Fibonacci dimension, fdim(G), as the minimum of such d. It holds idim(G)≤fdim(G)≤2·idim(G)-1. While idim(G) is computable in polynomial time, check whether idim(G)=fdim(G) is NP-complete. We survey the properties of partial cubes and Generalized Fibonacci Cubes and present a new family of graphs G for which idim(G)=fdim(G). We conclude with some open problems.

Anselmo, M., Giammarresi, D., Madonia, M., Mantaci, S. (2026). Partial Cubes and Fibonacci Dimension: Insights and Perspectives. In Developments in Language Theory (pp.15-29). Springer [10.1007/978-3-032-01475-7_2].

Partial Cubes and Fibonacci Dimension: Insights and Perspectives

Giammarresi, Dora
;
2026-01-01

Abstract

A partial cube is a graph G that can be isometrically embedded into a hypercube Qk, with the minimum of such k called the isometric dimension, idim(G), of G. A Fibonacci cubeΓk excludes strings containing 11 from the vertices. Any partial cube G embeds into some Γd, defining Fibonacci dimension, fdim(G), as the minimum of such d. It holds idim(G)≤fdim(G)≤2·idim(G)-1. While idim(G) is computable in polynomial time, check whether idim(G)=fdim(G) is NP-complete. We survey the properties of partial cubes and Generalized Fibonacci Cubes and present a new family of graphs G for which idim(G)=fdim(G). We conclude with some open problems.
29th International Conference on Developments in Language Theory, DLT 2025
kor
2025
Rilevanza internazionale
su invito
2026
Settore INFO-01/A - Informatica
English
Fibonacci Cubes
Isometric words
Partial Cubes
Intervento a convegno
Anselmo, M., Giammarresi, D., Madonia, M., Mantaci, S. (2026). Partial Cubes and Fibonacci Dimension: Insights and Perspectives. In Developments in Language Theory (pp.15-29). Springer [10.1007/978-3-032-01475-7_2].
Anselmo, M; Giammarresi, D; Madonia, M; Mantaci, S
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/435089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact