In vision, the brain is a feature extractor that works from images. We hypothesize that fMRI can mimic the latent space of a classifier, and employ deep diffusion models with BOLD data from the occipital cortex to generate images which are plausible and semantically close to the visual stimuli administered during fMRI. To this end, we mapped BOLD signals onto the latent space of a pretrained classifier and used its gradients to condition a generative model to reconstruct images. The semantic fidelity of our BOLD response to visual stimulus reconstruction model is superior to the state of the art.

Ferrante, M., Boccato, T., Toschi, N. (2023). Decoding semantic content of visual stimuli from BOLD fMRI data. In 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology Proceedings (pp.85-86). Institute of Electrical and Electronics Engineers Inc. [10.1109/IEEECONF58974.2023.10404199].

Decoding semantic content of visual stimuli from BOLD fMRI data

Ferrante, M;Boccato, T;Toschi, N
2023-01-01

Abstract

In vision, the brain is a feature extractor that works from images. We hypothesize that fMRI can mimic the latent space of a classifier, and employ deep diffusion models with BOLD data from the occipital cortex to generate images which are plausible and semantically close to the visual stimuli administered during fMRI. To this end, we mapped BOLD signals onto the latent space of a pretrained classifier and used its gradients to condition a generative model to reconstruct images. The semantic fidelity of our BOLD response to visual stimulus reconstruction model is superior to the state of the art.
2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology
2023
Rilevanza internazionale
2023
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
English
Intervento a convegno
Ferrante, M., Boccato, T., Toschi, N. (2023). Decoding semantic content of visual stimuli from BOLD fMRI data. In 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology Proceedings (pp.85-86). Institute of Electrical and Electronics Engineers Inc. [10.1109/IEEECONF58974.2023.10404199].
Ferrante, M; Boccato, T; Toschi, N
File in questo prodotto:
File Dimensione Formato  
Ferrrante-2023-Decoding_Semantic_Content_of_Visual_Stimuli_from_BOLD_fMRI_Data.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 686.21 kB
Formato Adobe PDF
686.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/404643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact