recently, graph neural networks (GNNs) have shown success at learning representations of brain graphs derived from functional magnetic resonance imaging (fMRI) data. the majority of existing GNN methods, however, assume brain graphs are static over time and the graph adjacency matrix is known prior to model training. these assumptions are at odds with neuroscientific evidence that brain graphs are time-varying with a connectivity structure that depends on the choice of functional connectivity measure. noisy brain graphs that do not truly represent the underling fMRI data can have a detrimental impact on the performance of GNNs. as a solution, we propose dynamic brain graph structure Learning (DBGSL), a novel method for learning the optimal time-varying dependency structure of fMRI data induced by a downstream prediction task. experiments demonstrate DBGSL achieves state-of-the-art performance for sex classification using real-world resting-state and task fMRI data. moreover, analysis of the learnt dynamic graphs highlights prediction-related brain regions which align with existing neuroscience literature. code available at https://github.com/ajrcampbell/dynamic-brain-graph-structure-learning.
Campbell, A., Zippo, A.g., Passamonti, L., Toschi, N., Lio, P. (2023). DBGSL: Dynamic Brain Graph Structure Learning. In MEDICAL IMAGING WITH DEEP LEARNING (pp.1318-1345). ML Research Press.
DBGSL: Dynamic Brain Graph Structure Learning
Toschi N.;
2023-01-01
Abstract
recently, graph neural networks (GNNs) have shown success at learning representations of brain graphs derived from functional magnetic resonance imaging (fMRI) data. the majority of existing GNN methods, however, assume brain graphs are static over time and the graph adjacency matrix is known prior to model training. these assumptions are at odds with neuroscientific evidence that brain graphs are time-varying with a connectivity structure that depends on the choice of functional connectivity measure. noisy brain graphs that do not truly represent the underling fMRI data can have a detrimental impact on the performance of GNNs. as a solution, we propose dynamic brain graph structure Learning (DBGSL), a novel method for learning the optimal time-varying dependency structure of fMRI data induced by a downstream prediction task. experiments demonstrate DBGSL achieves state-of-the-art performance for sex classification using real-world resting-state and task fMRI data. moreover, analysis of the learnt dynamic graphs highlights prediction-related brain regions which align with existing neuroscience literature. code available at https://github.com/ajrcampbell/dynamic-brain-graph-structure-learning.| File | Dimensione | Formato | |
|---|---|---|---|
|
Campbell-2023-DBGSL- Dynamic Brain Graph Structure Learning.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
10.86 MB
Formato
Adobe PDF
|
10.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


