We consider network autoregressive models for count data with a non-random neighborhood structure. The main methodological contribution is the development of conditions that guarantee stability and valid statistical inference for such models. We consider both cases of fixed and increasing network dimension and we show that quasi-likelihood inference provides consistent and asymptotically normally distributed estimators. The article is complemented by simulation results and a data example.

Armillotta, M., Fokianos, K. (2024). Count network autoregression. JOURNAL OF TIME SERIES ANALYSIS, 45(4), 584-612 [10.1111/jtsa.12728].

Count network autoregression

Mirko Armillotta;
2024-01-01

Abstract

We consider network autoregressive models for count data with a non-random neighborhood structure. The main methodological contribution is the development of conditions that guarantee stability and valid statistical inference for such models. We consider both cases of fixed and increasing network dimension and we show that quasi-likelihood inference provides consistent and asymptotically normally distributed estimators. The article is complemented by simulation results and a data example.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore STAT-01/A - Statistica
Settore STAT-02/A - Statistica economica
Settore ECON-05/A - Econometria
English
Generalized linear models
increasing dimension
link function
multi-variate count time series
quasi-likelihood
Armillotta, M., Fokianos, K. (2024). Count network autoregression. JOURNAL OF TIME SERIES ANALYSIS, 45(4), 584-612 [10.1111/jtsa.12728].
Armillotta, M; Fokianos, K
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Journal Time Series Analysis - 2023 - Armillotta - Count network autoregression.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact