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1. INTRODUCTION

The vast availability of integer-valued data, emerging from several real-world applications, has motivated the
growth of a large body of literature for modeling and inference of count time series processes. For comprehensive
surveys, see Kedem and Fokianos (2002), Weiß (2018), Davis et al. (2021), among others. The aim of this con-
tribution is to develop a statistical framework for network count time series which are simply multi-variate time
series equipped with a neighborhood structure. Consider the vector which consists of all node measurements at
some time t. This is going to be the response vector we will be studying and we will assume that its evolution is
influenced not only by past observations but also by its neighbors. We consider such processes assuming that their
neighborhood structure is known. We deal with a multi-variate problem whose main challenge is that the response
vector is high-dimensional and therefore we study, in detail, this case as we explain below.

1.1. Related Work

Early contributions to the development of count time series models were the Integer Autoregressive models (INAR)
Al-Osh and Alzaid (1987), Alzaid and Al-Osh (1990) and observation (Zeger and Liang, 1986) or parameter-driven
models (Zeger, 1988). The latter classification, due to Cox (1981), will be particularly useful as we will be
developing theory for count observation-driven models.

In this contribution, we appeal to the generalized linear model (GLM) framework, see McCullagh and
Nelder (1989), as it provides a natural extension of continuous-valued time series to integer-valued processes.
The GLM framework accommodates likelihood inference and supplies a toolbox whereby testing and diagnostics
can also be advanced. Some examples of observation-driven models for count time series include the works by
Davis et al. (2003), Heinen (2003), Fokianos and Kedem (2004) and Ferland et al. (2006), among others. Related
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work includes Fokianos et al. (2009) and Fokianos and Tjøstheim (2011) who develop properties and estimation
for a class of linear and log-linear count time series models. Further related contributions have appeared over
the last years; see Christou and Fokianos (2014) for quasi-likelihood inference of negative binomial processes,
Ahmad and Francq (2016) for quasi-likelihood inference based on suitable moment assumptions. In addition,
Douc et al. (2013, 2017), Dunsmuir (2016), Davis and Liu (2016), Cui and Zheng (2017), and more recently
Armillotta et al. (2022), among others, provide further generalizations of observation-driven models leaning on
general distribution functions or one-parameter exponential family of distributions. Theoretical properties of such
models have been fully investigated using various techniques; Fokianos et al. (2009) developed initially a pertur-
bation approach, Neumann (2011) employed the notion of 𝛽-mixing, Doukhan et al. (2012) (weak dependence
approach), Woodard et al. (2011) and Douc et al. (2013) (Markov chain theory without irreducibility assumptions)
and Wang et al. (2014) (using e-chains theory; see Meyn and Tweedie, 1993).

Studies of multi-variate INAR models include those of Latour (1997), Pedeli and Karlis (2011, 2013a, b), among
others. Theory and inference for multi-variate count time series models is a research topic which is receiving
increasing attention. In particular, observation-driven models and their properties are discussed by Heinen and
Rengifo (2007), Liu (2012), Andreassen (2013), Ahmad (2016) and Lee et al. (2018). More recently, Fokianos
et al. (2020) introduced a multi-variate extension of the linear and log-linear Poisson autoregression model,
by employing a copula-based construction for the joint distribution of the counts. The authors employ Poisson
processes’ properties to introduce joint dependence of counts over time. In doing so, they avoid technical dif-
ficulties associated with the non-uniqueness of copula for discrete distributions (Genest and Nešlehová, 2007,
pp. 507-508). They propose a plausible data generating process (DGP) which preserves, marginally, Poisson
processes’ properties, conditional on the past. Further details are given by the recent review of Fokianos (2021).

1.2. Network Time Series

Multi-variate observation-driven count time series models are useful for modeling time-varying network data. Such
data is increasingly available in many scientific areas (social networks, epidemics, etc.). Measuring the impact
of a network structure to a multi-variate time series process has attracted considerable attention over the last
years. In an unpublished work, Knight et al. (2016) defined multi-variate continuous time series coupled with a
network structure as network time series. Furthermore these authors proposed methodology for the analysis of
such data. Such approach has been originally proposed in the context of spatiotemporal data analysis, referred to as
Space-Time Autoregressive Moving Average (STARMA) models; Cliff and Ord (1975), Martin and Oeppen (1975)
and Pfeifer and Deutrch (1980), among many others. In general, any stream of data for a sample of units whose
relations can be modeled through an adjacency matrix (neighborhood structure), adhere to statistical techniques
developed in this article. Zhu et al. (2017) have discussed a similar model, called Network Autoregressive model
(NAR), which is an autoregressive model for continuous valued network data and established associated least
squares inference under two asymptotic regimes (a) with increasing time sample size T → ∞ and fixed network
dimension N and (b) with both N,T increasing. More precisely, it is assumed that N → ∞ and TN → ∞, i.e., the
temporal sample size is assumed to depend on N. The regime (a) corresponds to standard asymptotic inference
in time series analysis. However, in network analysis it is important to understand the behavior of the process
when the network’s dimension grows. This is a relevant problem in fields where typically the network is large,
see, for example, social networks in Wasserman et al. (1994). It is also essential to have stability conditions for
large network structures, so that proper time series inference can be advanced; those problems motivate study of
asymptotics under regime (b). Significant extension of this work to network quantile autoregressive models has
been recently reported by Zhu et al. (2019). Some other extensions of the NAR model include the grouped least
squares estimation (Zhu and Pan, 2020) and a network version of the GARCH model, see Zhou et al. (2020) but
for the case of T → ∞ and fixed network dimension N. Under the standard asymptotic regime (a), related work
was also developed by Knight et al. (2020) who specified a Generalized Network Autoregressive model (GNAR)
for continuous random variables, which takes into account different layers of relationships within neighbors of the
network. Moreover, the same authors provide R software (package GNAR) for fitting such models.
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586 M. ARMILLOTTA AND K. FOKIANOS

1.3. Our Contribution

Integer-valued responses are commonly encountered in real applications and are strongly connected to network
data. For example, several data of interest in social network analysis correspond to integer-valued responses (num-
ber of posts, number of likes, counts of digit employed in comments, etc). Another typical field of application is
related to the number of cases in epidemic models for studying the spread of infection diseases in a population; this
is even more important in the current COVID-19 pandemic outbreak. Recently, an application of this type which
employs a model similar to the NAR with count data has been suggested by Bracher and Held (2022). Therefore,
the extension of the NAR model to multi-variate count time series is an important theoretical and methodological
contribution which is not covered by the existing literature, to the best of our knowledge.

The main goal of this work is to fill this gap by specifying linear and log-linear Poisson network autoregressions
(PNAR) for count processes and by studying in detail the two related types of asymptotic inference discussed
above. Moreover, the development of all network time series models discussed so far relies strongly on the assump-
tion that the innovations are i.i.d. Such a condition might not be realistic in many applications. We overcome
this limitation by employing the notion of Lp-near epoch dependence (NED), see Andrews (1988), Pötscher and
Prucha (1997), and the related concept of 𝛼-mixing (Rosenblatt, 1956; Doukhan, 1994). These notions allow relax-
ation of the independence assumption as they provide some guarantee of asymptotic independence over time. An
elaborate and flexible dependence structure among variables, over time and over the nodes composing the network,
is available for all models we consider due to the definition of a full covariance matrix, where the dependence
among variables is captured by the copula construction introduced in Fokianos et al. (2020). For an alternative
approach to modeling multi-variate counts in continuous time see Veraart (2019), Eyjolfsson and Tjøstheim (2023),
and Fang et al. (2021) for a network model employing Hawkes processes which are related to the linear and
log-linear model we will be studying. Indeed those models are obtained after suitable discretization of the corre-
sponding continuous time process. However our proposal imposes a specific DGP, does not assume homogeneity
across the network and the condition required for obtaining good large sample properties of the QMLE are quite
different than those assumed by Fang et al. (2021).

For the continuous-valued case, Zhu et al. (2017) employed ordinary least square (OLS) estimation combined
with specific properties imposed on the adjacency matrix for the estimation of unknown model parameters. How-
ever, this method is not applicable to general time series models. In the case we study, estimation is carried out
by using quasi-likelihood methods; see Heyde (1997), for example. When the network dimension N is fixed and
T → ∞, standard results for Quasi Maximum Likelihood Estimation (QMLE) from multi-variate count autore-
gressions, as developed by Fokianos et al. (2020), carry over to the case of PNAR models. When the network
dimension is increasing, the asymptotic properties of the estimators would rely on the ergodicity of a stationary
random process

{
Yt ∶ t ∈ Z

}
with N →∞. However, there exists no widely accepted definition for stationarity of

a process with infinite dimension. Consequently no ergodicity results are available for processes with N →∞ and
standard time series results concerning convergence of sample means do not carry over to the increasing dimen-
sion case. In the present contribution, this problem is bypassed by providing an alternative proof, based on the
laws of large numbers for Lp-NED processes of Andrews (1988). Our method employs the working definition of
stationarity of Zhu et al. (2017, Def. 1) for processes of increasing dimension. All these developments are crucial
to a thorough study of QMLE under the double regime asymptotics we consider. Finally, we are addressing sev-
eral other related problem, including estimation of contemporaneous dependence and improving the efficiency of
the QMLE.

1.4. Outline

The article is organized as follows: Section 2 discusses the PNAR(p) model specification for the linear and the
log-linear case, with lag order p, and the related stability properties. In Section 3, quasi-likelihood inference is
established, showing consistency and asymptotic normality of the QMLE for the two types of asymptotics (a) and
(b). Section 4 discusses the results of a simulation study and an application on real data. The article concludes

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
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COUNT NETWORK AUTOREGRESSION 587

with an Appendix containing the proofs of Theorem 1 and Lemma 1 and 2. All the other proofs are included in
the Supplement SM together with additional results.

1.4.1. Notation

We denote |x|r =
(∑d

j=1
|||xj
|||
r)1∕r

the lr-norm of a d-dimensional vector x. If r = ∞, |x|∞ = max1≤j≤d |xj|.

Let ||X||r =
(∑d

j=1E(|Xj|r)
)1∕r

the Lr-norm for a random vector X. For a q × p matrix A = (aij),
i = 1, … , q, j = 1, … , p, denotes the generalized matrix norm |||A|||r = max|xr=1| |Ax|r. If r = 1,

then |||A|||1 = max1≤j≤p

∑q
i=1|aij|. If r = 2, |||A|||2 = 𝜌1∕2(ATA), where 𝜌(⋅) is the spectral radius. If

r = ∞, |||A|||∞ = max1≤i≤q

∑p
j=1|aij|. If q = p, then these norms are matrix norms. Define 𝜆max(M) the

largest absolute eigenvalue of a symmetric matrix M. Define |x|v =
(||x1

|| , … , ||xd
||
)′

, |A|v =
(|||ai,j

|||

)

(i,j)
and

‖X‖v =
(
E ||X1

|| , … ,E ||Xd
||
)′

the elementwise l1-norm for vectors, matrices and random vectors respectively.
Moreover, denote by ≺ a partial order relation on x, y ∈ Rd such that x ≺ y means xi ≤ yi for i = 1, … , d. For
a d-dimensional vector x, with d → ∞, set the following compact notation sup1≤i<∞ xi = supi≥1 xi. The notations
Cr and Dr denote a constant which depend on r, where r ∈ N. In particular C denotes a generic constant. Finally,
throughout the article the notation

{
N,TN

}
→ ∞ will be used as a shorthand for N → ∞ and TN → ∞, where

the temporal size T is assumed to depend on the network dimension N.

2. STABILITY RESULTS FOR COUNT NETWORK TIME SERIES

We consider a network with N nodes (network size) and index i = 1, … ,N. The structure of the network is
completely described by the adjacency matrix A = (aij) ∈ RN×N , i.e. aij = 1 provided that there exists a directed
edge from i to j, i → j (e.g. user i follows j on Twitter), and aij = 0 otherwise. However, undirected graphs are
allowed (i ↔ j). The structure of the network is assumed non-random, by this we mean that the network is known
with fixed edges; see also Zhu et al. (2017). Self-relationships are not allowed, i.e. aii = 0 for any i = 1, … ,N;
this is a typical assumption, and it is reasonable for various real situations, e.g. social networks, where users do
not follow themselves; see Wasserman et al. (1994) and Kolaczyk and Csárdi (2014). Define a count variable
Yi,t ∈ R for the node i at time t. We want to assess the effect of the network structure on the count variable

{
Yi,t

}

for i = 1, … ,N over time t = 1, … ,T .
Here, we study the properties of linear and log-linear models. We initiate this study by consid-

ering a simple, yet illuminating, case of a linear model of order one and then we consider the
more general case of p’th order model. Finally, we discuss log-linear models. In what follows, we
denote by

{
Yt = (Yi,t, i = 1, 2, … ,N, t = 0, 1, 2 … ,T)

}
an N-dimensional vector of count time series with{

𝝀t = (𝜆i,t, i = 1, 2, … ,N, t = 1, 2, … ,T)
}

be the corresponding N-dimensional intensity process vector.
Define by t = 𝜎(Ys ∶ s ≤ t). Based on the specification of the model, we assume that 𝝀t = E(Yt|t−1).

2.1. Linear PNAR(1) Model

A linear count network model of order 1, is given by

Yi,t|t−1 ∼ Poisson(𝜆i,t), 𝜆i,t = 𝛽0 + 𝛽1n−1
i

N∑

j=1

aijYj,t−1 + 𝛽2Yi,t−1, (1)

where 𝛽0, 𝛽1, 𝛽2 ≥ 0 and ni =
∑

j≠i aij is the out-degree, i.e the total number of nodes which i has an edge with.
From the left-hand side equation of (1), we observe that the process Yi,t is assumed to be marginally Poisson,
conditionally to the past. We call (1) linear Poisson network autoregression of order 1, abbreviated by PNAR(1).

Model (1) postulates that, for every single node i, the marginal conditional mean of the process is regressed on
the past count of the variable itself for i and the average count of the other nodes j ≠ i which have a connection

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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588 M. ARMILLOTTA AND K. FOKIANOS

with i. This model assumes that only the nodes which are directly followed by the focal node i possibly have
an impact on the mean process of counts. It is a reasonable assumption in many applications. For example, in a
social network, the activity of node k, which satisfies aik = 0, does not affect node i. The parameter 𝛽1 is called
network effect, as it measures the average impact of node i’s connections n−1

i

∑N
j=1aijYj,t−1. The coefficient 𝛽2 is

called momentum effect because it provides a weight for the impact of past count Yi,t−1. This interpretation is in
line with the Gaussian NAR as discussed by Zhu et al. (2017) for the case of continuous variables.

Equation (1) does not include information about the joint dependence structure of the PNAR(1) model.
Then the goal is to introduce a multi-variate random vector, at each time point t, whose each component follow

marginally the Poisson distribution (conditionally to the past) but there exists among them arbitrary correlation. In
a recent work, Fokianos et al. (2020) defined such a distribution in terms of a DGP specified by an algorithm which
generates a random vector whose dependence among their components is introduced by imposing a copula on the
waiting times of a Poisson process; see also (Fokianos, 2021, p. 4). In this way, we can, define the multi-variate
copula Poisson distribution with parameter, say 𝝀 = (𝜆1, … , 𝜆N)T , and denote it by MCP(𝝀), as an N-dimensional
random vector whose components are marginally Poisson distributed with mean 𝜆i, i = 1, 2, … ,N and whose
structure of dependence is modeled through the copula C(… ) on their associated exponential waiting times
random variables. It is then convenient to rewrite (1) in vectorial form, following Fokianos et al. (2020),

Yt|t−1 ∼ MCP(𝝀t), 𝝀t = 𝜷0 +GYt−1, (2)

where 𝜷0 = 𝛽01N ∈ RN , with 1 = (1, 1, … , 1)T ∈ RN , and the matrix G = 𝛽1W + 𝛽2IN , where W =
diag

{
n−1

1 , … , n−1
N

}
A is the row-normalized adjacency matrix, with A = (aij), so wi = (aij∕ni, j = 1, … ,N)T ∈

RN is the ith row vector of the matrix W, satisfying |||W|||∞ = 1, and IN is the N ×N identity matrix. In general,
the weights wi can be chosen arbitrarily as long as |||W|||∞ = 1 is satisfied. To obtain insight for the DGP, as
introduced by (2), consider a set of values (𝛽0, 𝛽1, 𝛽2)T and a starting vector 𝝀0 = (𝜆1,0, … , 𝜆N,0)T ,

1. Let Ul = (U1,l, … ,UN,l), for l = 1, … ,K a sample from a N-dimensional copula C(u1, … , uN), where Ui,l

follows a Uniform(0,1) distribution, for i = 1, … ,N.
2. The transformation Xi,l = − log Ui,l∕𝜆i,0 follows the exponential distribution with parameter 𝜆i,0, for

i = 1, … ,N.

3. If Xi,1 > 1, then Yi,0 = 0, otherwise Yi,0 = max
{

k ∈ [1,K] ∶
∑k

l=1Xi,l ≤ 1
}

, by taking K large enough. Then,

Yi,0|𝝀0 ∼ Poisson(𝜆i,0), for i = 1, … ,N. So, Y0 = (Y1,0, … ,YN,0) is a set of (conditionally) marginal Poisson
processes with mean 𝝀0.

4. By using the model (2), 𝝀1 is obtained.
5. Return back to step 1 to obtain Y1, and so on.

In practical applications the sample size K should be a large value, e.g. K = 1000; its value clearly depends,
in general, on the magnitude of observed data. Moreover, the copula construction C(… ) will depend on one or
more unknown parameters, say 𝜌, which capture the contemporaneous correlation among the variables.

The previous algorithm generates a sample of multi-variate counts for practical simulations. In principle, the
algorithm simulates realizations of a stochastic process

{
Yt; t ∈ Z

}
, i.e. for all integers. Accordingly, 𝝀0 is not

a fixed vector but 𝝀0 = 𝜷0 + GY−1, being a function of −1, then Yi,0|𝝀0 ∼ Poisson(𝜆i,0) is equivalent to say
Yi,0|−1 ∼ Poisson(𝜆i,0). The same happens for 𝝀−1 ad so on. Then, the DGP generates Yi,t being conditionally
marginally Poisson for all t ∈ Z.

The development of a multi-variate count time series model would be based on specification of a joint
distribution, so that the standard likelihood inference and testing procedures can be developed. Although sev-
eral alternatives have been proposed in the literature, see the review in Fokianos (2021, sec. 2), the choice
of a suitable multi-variate version of the conditional Poisson probability mass function (p.m.f) is a challeng-
ing problem. In fact, multi-variate Poisson-type p.m.f have usually complicated closed form and the associ-
ated likelihood inference is theoretically and computationally cumbersome. Furthermore, in many cases, the

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
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COUNT NETWORK AUTOREGRESSION 589

available multi-variate Poisson-type p.m.f. implicitly imply restrictions on models with limited use in applications
(e.g. covariances always positive, constant pairwise correlations). In this article the joint distribution of the vector{

Yt

}
is constructed by following the copula approach described above. The proposed DGP ensures that all

marginal distributions of Yi,t are univariate Poisson, conditionally to the past, as described in (1), while it intro-
duces an arbitrary dependence among them in a flexible and general way by the copula construction. See Inouye
et al. (2017) and Fokianos (2021) for a discussion on the choice of multi-variate count distributions and sev-
eral alternatives. Further results regarding the empirical properties of model (2) are discussed in Section S-1.2 of
Supplement SM.

We choose the conditional multi-variate copula Poisson distribution for its simplicity and because it is a nat-
ural distributional assumption for counting number of events over a time period. However, any multi-variate
count distribution whose mean is modeled through (1) and possesses moments up to an appropriate order fits the
QMLE methodology which employs (10) to derive consistent and asymptotically normally distributed estimators.
In fact, theory and applications can be extended to other count distributions. By exploiting the same copula con-
struction and modifying suitably the generation of exponential waiting times, we can define a conditional copula
multi-variate Negative Binomial distribution, and more generally a conditional copula mixed Poisson distribution;
see Fokianos et al. (2020, p. 474). A complete treatment of such extensions remains unexplored.

2.2. Linear PNAR(p) Model

More generally, we introduce and study an extension of model (1) by allowing Yi,t to depend on the last p lagged
values. We call this the linear Poisson NAR(p) model and its defined analogously to (1) but with

𝜆i,t = 𝛽0 +
p∑

h=1

𝛽1h

(

n−1
i

N∑

j=1

aijYj,t−h

)

+
p∑

h=1

𝛽2hYi,t−h, (3)

where 𝛽0, 𝛽1h, 𝛽2h ≥ 0 for all h = 1 … , p. If p = 1, set 𝛽11 = 𝛽1, 𝛽22 = 𝛽2 to obtain (1). The joint conditional
distribution of the vector Yt is defined by means of the copula construction discussed in Section 2.1. Without loss
of generality, we can set coefficients equal to zero if the parameter order is different in both terms of (3). Then (3)
is rewritten as

Yt|t−1 ∼ MCP(𝝀t) 𝝀t = 𝜷0 +
p∑

h=1

GhYt−h, (4)

where Gh = 𝛽1hW + 𝛽2hIN for h = 1, … , p by recalling that W = diag
{

n−1
1 , … , n−1

N

}
A. The following result

establishes sharp verifiable conditions for proving ergodicity, when N is fixed.

Proposition 1. Consider model (4), with fixed N. Suppose that 𝜌
(∑p

h=1Gh

)
< 1. Then, the process {Yt, t ∈ Z}

is stationary and ergodic with E||Yt
||
r
1 <∞ for any r ≥ 1.

The result follows from Debaly and Truquet (2021, thm. 2). Similar results have been recently proved by
Fokianos et al. (2020) when the lagged conditional mean 𝝀t−1 is added as a feedback term in the model. Follow-
ing these authors, we obtain the same results of Proposition 1 but under stronger conditions. For example, when
p = 1, we will need to assume either |||G|||1 < 1 or |||G|||2 < 1 to obtain identical conclusions. Results about
the first and second-order properties of model (3) are given in Section S-1 in Supplement SM; see also Fokianos
et al. (2020, prop. 3.2).

Proposition 1 establishes the existence of the moments of the count process with fixed N, but this property is not
guaranteed to hold when N → ∞. The following results show that, is N → ∞, the conclusions of Proposition 1
are still true.

Proposition 2. Consider model (4) and
∑p

h=1(𝛽1h + 𝛽2h) < 1. Then, supi≥1 E||Yi,t
||
r
≤ Cr < ∞, for any r ∈ N.

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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590 M. ARMILLOTTA AND K. FOKIANOS

In order to investigate the stability results of the process
{

Yt ∈ NN
}

when the network size is diverging
(N → ∞) we employ the working definition of stationarity for increasing dimensional processes as discussed by
Zhu et al. (2017, def. 1). The following result holds.

Theorem 1. Consider model (4). Assume
∑p

h=1(𝛽1h + 𝛽2h) < 1 and N → ∞. Then, there exists a unique strictly
stationary solution {Yt ∈ NN , t ∈ Z} to the linear PNAR(p) model, with supi≥1 E||Yi,t

||
r
≤ Cr < ∞, for all r ≥ 1.

Theorem. 1 extends (Zhu et al., 2017, thm.1). Although stronger than the conditions of Proposition 1,∑p
h=1(𝛽1h + 𝛽2h) < 1 allows to prove stationarity for increasing network size N and the existence of moments

of the process; moreover, it is more natural assumption than the condition 𝜌(
∑p

h=1Gh) < 1, and it complements
the existing work for continuous valued models; Zhu et al. (2017). It is worth pointing out that the copula con-
struction is not used in the proof of Theorem 1 (see also Theorem 2 for log-linear model). However, it is used in
Section 4.1 where we report a simulation study. It is interesting though, that even under this setup, stability condi-
tions are independent of the correlation structure of innovations; this is similar to the case of multi-variate ARMA
models.

Remark 1. Models (4) implies that Yi,t are marginally Poisson distributed conditionally on the past of the process,
t−1. There is no any assumption about the marginal and joint unconditional distributions of the process. In general,
the unconditional distribution of Yt is unknown. However, from the results of Theorem 1 we can conclude that
Yt is a stationary Markov chain of order p so its (unconditional) distribution exists, is unique, does not depend
on t and all its moments are uniformly bounded. Moreover, we derive explicitly the first two moments of such
distribution (Section S-1 in Supplement SM).

Remark 2. A count GNAR(p) extension similar to the model introduced by Knight et al. (2020, eq. 1), for the
standard asymptotic regime (T → ∞), in the context of continuous-valued random variables, is included in the
framework we consider. Such model adds an average neighbor impact for several stages of connections between

the nodes of a given network. That is,  (r)(i) = 
{
 (r−1)(i)

}
∕
[{
∪r−1

q=1
(q)(i)

}
∪ {i}

]
, for r = 2, 3, … and

 (1)(i) =  ({i}), with ({i}) = {j ∈ {1, … ,N} ∶ i → j} the set of neighbors of the node i. (So, e.g., (2)(i)
describes the neighbors of the neighbors of the node i, and so on.) In this case, the row-normalized adjacency matrix
have elements

(
W(r))

i,j
= wi,j × I(j ∈  (r)(i)), where wi,j = 1∕card( (r)(i)), card(⋅) denotes the cardinality of a

set and I(⋅) is the indicator function. Several M types of edges are allowed in the network. The Poisson GNAR(p)
has the following formulation.

𝜆i,t = 𝛽0 +
p∑

h=1

⎛
⎜
⎜
⎝

M∑

m=1

sh∑

r=1

𝛽1,h,r,m

∑

j∈ (r)
t (i)

wi,j,mYj,t−h + 𝛽2,hYi,t−h

⎞
⎟
⎟
⎠
, (5)

where sh is the maximum stage of neighbor dependence for the time lag h and all the parameters of the model need
to be non-negative. Model (5) can be included in the formulation (4) by setting Gh =

∑M
m=1

∑sh

r=1𝛽1,h,r,mW(r,m) +
𝛽2,hIN . Since it holds that

∑
j∈ (r)(i)

∑M
m=1wi,j,m = 1, we have |||

|||
|||
∑M

m=1W(r,m)|||
|||
|||∞ = 1. Hence, the result of the

present contribution, i.e., existence of the moments of the model, the related stability properties and the associated
inferential results, under the standard asymptotic regime, apply to (5).

2.3. Log-linear PNAR models

Recall model (1). The network effect 𝛽1 of model (1) is typically expected to be positive, see Chen et al. (2013),
and the impact of Yi,t−1 is positive, as well. Hence, positive constraints on the parameters are theoretically justi-
fiable as well as practically sound. However, in order to allow a natural link to the GLM theory, McCullagh and
Nelder (1989), and allowing the possibility to include covariates as well as real valued coefficients, we additionally

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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COUNT NETWORK AUTOREGRESSION 591

study the following log-linear model, see Fokianos and Tjøstheim (2011):

Yi,t|t−1 ∼ Poisson(exp(𝜈i,t)), 𝜈i,t = 𝛽0 + 𝛽1n−1
i

N∑

j=1

aij log(1 + Yj,t−1) + 𝛽2 log(1 + Yi,t−1), (6)

where 𝜈i,t = log(𝜆i,t) for every i = 1, … ,N. No parameters constraints are required for model (6) since 𝜈i,t ∈ R.
Interpretation of all parameters is the same, as in the case of (1), but in the logarithmic scale. Again, the model
can be rewritten in vectorial form, as in the case of model (2)

Yt|t−1 ∼ MCP(exp(𝝂t)), 𝝂t = 𝜷0 +G log(1N + Yt−1), (7)

where MCP(exp(𝝂t)) is an N-dimensional copula conditional Poisson distribution, as above. Furthermore, it can
be useful rewriting the model as follow.

log(1N + Yt) = 𝜷0 +G log(1N + Yt−1) + 𝝍 t,

where 𝝍 t = log(1N + Yt) − 𝝂t. By lemma A.1 in Fokianos and Tjøstheim (2011) E(𝝍 t|t−1) → 0 as 𝝂t → ∞, so
𝝍 t is approximately martingale difference sequence (MDS). This means that the formulation of first two moments
established for the linear model in Section S-1 in Supplement SM hold, approximately, for log(1N+Yt). We discuss
empirical properties of the count process Yt of model (6) in Section S-2.3 of the Supplement SM. Moreover,
𝝃t = Yt − exp(𝝂t) is a MDS. We define the log-linear PNAR(p) by

𝜈i,t = 𝛽0 +
p∑

h=1

𝛽1h

(

n−1
i

N∑

j=1

aij log(1 + Yj,t−h)

)

+
p∑

h=1

𝛽2h log(1 + Yi,t−h), (8)

using the same notation as before. Then

Yt|t−1 ∼ MCP((exp(𝝂t)), 𝝂t = 𝜷0 +
p∑

h=0

Gh log(1N + Yt−h), (9)

where Gh = 𝛽1hW + 𝛽2hIN for h = 1, … , p. The following results are complementing Propositions 1,2 and
Theorem 1 proved for the case of log-linear model.

Proposition 3. Consider model (9), with fixed N. Suppose that 𝜌
(∑p

h=1
||Gh

||v
)
< 1. Then the process {Yt, t ∈ Z}

is stationary and ergodic with E ||Yt
||1 < ∞. Moreover, if ||||||||Gh

||v||||||∞ < 1, there exists some 𝛿 > 0 such that
E[exp(𝛿 ||Yt

||1)] < ∞ and E[exp(𝛿 ||𝝂t
||1)] < ∞.

The result follows from Debaly and Truquet (2019, thm. 5). Analogously to the linear model, we need to show
the uniform boundedness of moments of the process and the stationarity of the model with increasing dimension.
Since the noise 𝝍 t is approximately MDS, the following result is proved by employing approximate arguments.

Proposition 4. Consider model (9) and ||
∑p

h=1(𝛽1h + 𝛽2h)|| < 1. Then, supi≥1 E||Yi,t
||
r
≤ Cr < ∞, and

supi≥1 E[exp(r ||𝜈i,t
||)] ≤ Dr < ∞, for any r ∈ N.

Analogously to Theorem 1, a strict stationarity result for network of increasing order is given for the log-linear
PNAR model (9).

Theorem 2. Consider model (9). Assume
∑p

h=1(||𝛽1h
|| + ||𝛽2h

||) < 1 and N → ∞. Then, there exists a unique
strictly stationary solution {Yt ∈ NN , t ∈ Z} to the log-linear PNAR model, with supi≥1 E||Yi,t

||
r
≤ Cr < ∞, and

supi≥1 E[exp(r ||𝜈i,t
||)] ≤ Dr < ∞, for all r ≥ 1.

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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592 M. ARMILLOTTA AND K. FOKIANOS

Remark 3. For simplicity, model (4) has been defined without including covariates. But time-invariant positive
covariates Z ∈ Rd

+ can be included without affecting the results of the present contribution, under suitable moments
existence assumptions. This is a useful fact because we can consider available node-specific characteristics, for
example. Moreover, the log-linear version (9) ensures the inclusion of covariates whose values belong to Rd.

Remark 4. Analogous arguments made in Remark 2 for the linear model case hold true for the log-linear model (8)
and a log-linear GNAR(p) can be advanced.

3. QUASI-LIKELIHOOD INFERENCE FOR INCREASING NETWORK SIZE

We develop inference for the unknown vector of parameters of models (4) and (9), denoted by 𝜽 =
(𝛽0, 𝛽11, … , 𝛽1p, 𝛽21, … , 𝛽2p)T ∈ 𝛬 ⊂ Rm, where m = 2p + 1 and 𝛬 is the parameter space. Full parametric
likelihood inference requires specification of the conditional joint p.m.f., which is hard to obtain, because the
exponential waiting times employed for steps 2 and 3 of the DGP algorithm are latent random variables. This
implies that the imposed copula function cannot be used to obtain the full model likelihood. Nevertheless, the
marginal conditional distributions of the DGP are well-defined quantities and can be employed for estimation of
unknown parameters. Then, the estimation problem is approached by using the quasi maximum likelihood the-
ory; see Wedderburn (1974) and Gourieroux et al. (1984) among others. Developing proofs of consistency and
asymptotic normality of the QMLE, when N → ∞ and TN → ∞, is the main goal of the present section. Define
the conditional quasi log-likelihood function for the vector of unknown parameters 𝜽 by

lNT (𝜽) =
T∑

t=1

N∑

i=1

(
Yi,t log 𝜆i,t(𝜽) − 𝜆i,t(𝜽)

)
≡

T∑

t=1

N∑

i=1

li,t(𝜽), (10)

which is the log-likelihood one would obtain if time series modeled in (4), or (9), are contemporaneously inde-
pendent. Clearly such an approach does not require any specification/estimation of the copula structure C(… , 𝜌)
and its set of parameters 𝜌. Note that although the copula is not included in the maximization of the ‘working’
log-likelihood (10), the QMLE is not computed under the assumption of independence; this is easily seen by
the form of the information matrix (15) below, which depends on the true conditional covariance matrix of the
process Yt.

The quasi log-likelihood (10) allows computational simplifications and guarantees valid asymptotic properties
of the estimator at the cost of a lower efficiency when compared top the full maximum likelihood estimator. In
particular, (10) is a member of the one-parameter exponential family; then, even though we do not employ the true
likelihood, Gourieroux et al. (1984, thm. 1-3) gives an indication that the resulting estimator will be consistent and
asymptotically normal. Note that we study a different framework since both T ,N are assumed to tend to infinity.
Since W is a non-random sequence of matrices indexed by N, the specification of the asymptotic properties of the
estimator deals with two diverging indexes, N → ∞ and T →∞, allowing to establish a double-dimensional-type
of converge, when both the temporal size and the network dimension grow together. Assuming that there exists
a true vector of parameter, say 𝜽0, such that the mean model specification (4) (or equivalently (9)) is correct,
regardless the true DGP, then we obtain a consistent and asymptotically normal estimator by maximizing the quasi
log-likelihood (10). This is a novel result as most contributions in the literature deal either with the case N = 1 or
N fixed; see previous references.

Consider the linear PNAR model (4). Denote by �̂� ∶= arg max
𝜽∈𝛬lNT (𝜽), the QMLE for 𝜽. The score function

for the linear model is given by

SNT (𝜽) =
T∑

t=1

N∑

i=1

(
Yi,t

𝜆i,t(𝜽)
− 1

)
𝜕𝜆i,t(𝜽)
𝜕𝜽

=
T∑

t=1

𝜕𝝀
T
t (𝜽)
𝜕𝜽

D−1
t (𝜽)

(
Yt − 𝝀t(𝜽)

)
=

T∑

t=1

sNt(𝜽) , (11)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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COUNT NETWORK AUTOREGRESSION 593

where

𝜕𝝀t(𝜽)
𝜕𝜽

T
= (1N ,WYt−1, … ,WYt−p,Yt−1, … ,Yt−p),

is a N ×m matrix and Dt(𝜽) is the N ×N diagonal matrix with diagonal elements equal to 𝜆i,t(𝜽) for i = 1, … ,N.
The Hessian matrix (multiplied by -1) is given by

HNT (𝜽) =
T∑

t=1

𝜕𝝀
T
t (𝜽)
𝜕𝜽

Ct(𝜽)
𝜕𝝀t(𝜽)
𝜕𝜽

T
=

T∑

t=1

HNt(𝜽), (12)

with Ct(𝜽) = diag
{

Y1,t∕𝜆2
1,t(𝜽) … YN,t∕𝜆2

N,t(𝜽)
}

and the conditional information matrix is

BNT (𝜽) =
T∑

t=1

𝜕𝝀
T
t (𝜽)
𝜕𝜽

D−1
t (𝜽)𝚺t(𝜽)D

−1
t (𝜽)

𝜕𝝀t(𝜽)
𝜕𝜽

T
=

T∑

t=1

BNt(𝜽), (13)

where 𝚺t(𝜽) = E(𝝃t𝝃
T
t |t−1) denotes the true conditional covariance matrix of the vector Yt and recalling

𝝃t ≡ Yt − 𝝀t. Expectation is taken with respect to the stationary distribution of
{

Yt

}
. Moreover, the theoretical

counterpart of the Hessian and information matrices respectively, are the following.

HN(𝜽) = E

[
𝜕𝝀

T
t (𝜽)
𝜕𝜽

D−1
t (𝜽)

𝜕𝝀t(𝜽)
𝜕𝜽

T

]

, (14)

BN(𝜽) = E

[
𝜕𝝀

T
t (𝜽)
𝜕𝜽

D−1
t (𝜽)𝚺t(𝜽)D

−1
t (𝜽)

𝜕𝝀t(𝜽)
𝜕𝜽

T

]

. (15)

Similarly for the log-linear PNAR model, we have that the score function is given by:

SNT (𝜽) =
T∑

t=1

N∑

i=1

(
Yi,t − exp(𝜈i,t(𝜽))

) 𝜕𝜈i,t(𝜽)
𝜕𝜽

=
T∑

t=1

𝜕𝝂T
t (𝜽)
𝜕𝜽

(
Yt − exp(𝝂t(𝜽))

)
, (16)

where

𝜕𝝂t(𝜽)
𝜕𝜽

T
= (1N ,W log(1N + Yt−1), … ,W log(1N + Yt−p), log(1N + Yt−1), … , log(1N + Yt−p)),

is a N × m matrix, and

HNT (𝜽) =
T∑

t=1

𝜕𝝂T
t (𝜽)
𝜕𝜽

Dt(𝜽)
𝜕𝝂t(𝜽)
𝜕𝜽

T
, (17)

BNT (𝜽) =
T∑

t=1

𝜕𝝂T
t (𝜽)
𝜕𝜽

𝚺t(𝜽)
𝜕𝝂t(𝜽)
𝜕𝜽

T
,

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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594 M. ARMILLOTTA AND K. FOKIANOS

where Dt(𝜽) is the N × N diagonal matrix with diagonal elements equal to exp(𝜈i,t(𝜽)) for i = 1, … ,N and
𝚺t(𝜽) = E(𝝃t𝝃

T
t |t−1) with 𝝃t = Yt − exp(𝝂t(𝜽)). Moreover,

HN(𝜽) = E

[
𝜕𝝂T

t (𝜽)
𝜕𝜽

Dt(𝜽)
𝜕𝝂t(𝜽)
𝜕𝜽

T

]

, (18)

BN(𝜽) = E

[
𝜕𝝂T

t (𝜽)
𝜕𝜽

𝚺t(𝜽)
𝜕𝝂t(𝜽)
𝜕𝜽

T

]

, (19)

are respectively (minus) the Hessian matrix and the information matrix.

3.1. Linear Model Inference

Recall (10). We drop the dependence on 𝜽 when a quantity is evaluated at 𝜽0. For ease of presentation, consider
model (2) with first moment E(Yt) = 𝝁 = 𝜇1N where 𝜇 = 𝛽0∕(1 − 𝛽1 − 𝛽2) (see Section S-1 in Supplement SM).

Moreover, the elementwise absolute value of the error covariance matrix is defined as 𝜮𝝃 = E |||𝝃t𝝃
T
t
|||v. Define

the following expectations Π222 = N−1∑N
i=1E[(wT

i (Yt−1 − 𝝁))3∕𝜆i,t], Π223 = N−1∑N
i=1E[(wT

i (Yt−1 − 𝝁))2Yi,t−1∕𝜆i,t],
Π233 = N−1∑N

i=1E[wT
i (Yt−1 − 𝝁)Y2

i,t−1∕𝜆i,t], Π333 = N−1∑N
i=1E[Y3

i,t−1∕𝜆i,t]. Those expectations constitute sum-
mands for some of the elements of the expected third derivative matrix of li,t(𝜽). Consider the set Ωd =
{(2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)}, (j∗, l∗, k∗) = arg max1≤j,l,k≤m

|||N
−1∑N

i=1𝜕
3li,t(𝜽)∕𝜕𝜽j𝜕𝜽l𝜕𝜽k

||| is the set of indices
where the absolute value of the third derivative is maximum. Assume the following:

B1 The process
{
𝝃t, 

N
t ∶ N ∈ N, t ∈ Z

}
is 𝛼-mixing, where N

t = 𝜎
(
𝜉i,s ∶ 1 ≤ i ≤ N, s ≤ t

)
.

B2 Let W be a sequence of matrices with non-random entries indexed by N.

B2.1 Consider W as a transition probability matrix of a Markov chain, whose state space is defined as the
set of all the nodes in the network (i.e., {1, … ,N}). The Markov chain is assumed to be irreducible
and aperiodic. Further, define 𝝅 = (𝜋1, … , 𝜋N)T ∈ RN as the stationary distribution of the Markov
chain, where 𝜋i ≥ 0,

∑N
i=1𝜋i = 1 and 𝝅 = WT

𝝅. Furthermore, assume that 𝜆max(𝜮𝝃)
∑N

i=1𝜋
2
i → 0

as N →∞.
B2.2 Define W∗ = W + WT and assume that 𝜆max(W

∗) = (log N) and 𝜆max(𝜮𝝃) = ((log N)𝛿), for
some 𝛿 ≥ 1.

B3 Set 𝚲 = E(D−1
t ), 𝚪(0) = E[D−1∕2

t (Yt−1 − 𝝁)(Yt−1 − 𝝁)TD−1∕2
t ] and 𝚫(0) = E[D−1∕2

t W(Yt−1 −
𝝁)(Yt−1 − 𝝁)TWTD−1∕2

t ]. Assume the following limits exist: d1 = limN→∞ N−1tr (𝚲), d2 =
limN→∞ N−1tr

[
𝚪(0)

]
, d3 = limN→∞ N−1tr

[
W𝚪(0)

]
, d4 = limN→∞ N−1tr [𝚫(0)] and, if (j∗, l∗, k∗) ∈ Ωd,

d∗ = limN→∞ Πj∗ ,l∗,k∗ .

Assumption B1 (see Doukhan, 1994) is a mixing condition. Recall that 𝝃t is an 𝛼-mixing array if, namely,

𝛼(J) = sup
N∈N

𝛼N(J) = sup
t∈Z,N∈N

sup
A∈N

−∞,t ,B∈
N
t+J,∞

|P(A ∩ B) − P(A)P(B)|
J→∞

−−−−−→ 0,

where N
t ≡ 

N
−∞,t = 𝜎

(
𝜉i,s ∶ 1 ≤ i ≤ N, s ≤ t

)
, N

t+J,∞ = 𝜎
(
𝜉i,s ∶ 1 ≤ i ≤ N, s ≥ t + J

)
. This assumption holds

true for the simple example of 𝝃t ∼ IID(0,𝚺)where 𝝃t is constructed by the copula method proposed in this article.
In this case, the noise is independent over time but it is non contemporaneous independent. Another example

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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would be all the processes which satisfy 𝛼N(J) ≤ f (J), where f (J) is some function which does not depend on N,
such that f (J)→ 0 as J →∞.

Assumption B2 on the network structure implies that the edges between nodes are known and as N increases to
N + 1 an additional node is added with some edges to the previous N nodes, but the edges among the previous N
nodes do not change. Moreover, it requires some uniformity conditions, and it is equivalent set of conditions as Zhu
et al. (2019, C2, C2.1-C2.2). Finally, B2.2 requires that the network structure admits certain uniformity property
(𝜆max(W

∗) diverges slowly). Zhu et al. (2017, supp. mat., sec. 7.1-7.3) found empirically that this is the case for
several network models. In our case, regularity assumptions on the structure of dependence among the errors, when
the network grows, are required by imposing that the diverging rate of 𝜆max(𝜮𝝃)will be slower than order(N), in
B2.2, and its product with the squared sum of the stationary distribution of the chain, 𝝅, will tend to 0, in B2.1. We
give an empirical verification of such conditions in Section S-4 of the Supplement SM. In the continuous-valued
case introduced in Zhu et al. (2017) such assumptions are not necessary because the errors are i.i.d with common
variance 𝜎2. Moreover, in this case, the absolute value is no more required because 𝜮

𝝃
= E

(
𝝃t𝝃

T
t

)
= 𝜎2IN .

The conditions outlined in B3 are law of large numbers-like assumptions, which are quite standard in the existing
literature, since little is known about the behavior of the process as N → ∞. These assumptions are required to
guarantee that the Hessian matrix (12) converges to a matrix which exists. Section S-4 in Supplement SM includes
numerical study examples showing the validity of these limits. If OLS estimation with i.i.d errors was performed,
conditions B3 would correspond exactly to those in Zhu et al. (2017, C3).

Lemma 1. For the linear model (2), suppose 𝛽1 + 𝛽2 < 1 and B1–B3 hold. Consider SNT and HNT defined as in
(11) and (12) respectively. Then, as

{
N,TN

}
→∞

1. (NTN)−1HNTN

p
−→ H,

2. (NTN)−1SNTN

p
−→ 0m,

3. maxj,l,k sup
𝜽∈(𝜽0)

||||
(NTN)−1∑TN

t=1

∑N
i=1

𝜕3li,t(𝜽)
𝜕𝜽j𝜕𝜽l𝜕𝜽k

||||
≤ MNTN

p
−→ M,

where (𝜽0) =
{
𝜽 ∶ |𝜽 − 𝜽0|2 < 𝛿

}
is a neighborhood of 𝜽0, MNTN

∶= (NTN)−1∑TN

t=1

∑N
i=1mi,t, M is a finite

constant, H = limN→∞ N−1HN is non singular and

H =
⎛
⎜
⎜
⎜
⎝

d1 𝜇d1 𝜇d1

𝜇2d1 + d4 𝜇2d1 + d3

𝜇2d1 + d2

⎞
⎟
⎟
⎟
⎠

. (20)

Some preliminary results required to show the lemma are proved in Section S-3.1 in Supplement SM. The proof
of Lemma 1 is given in Appendix A.2.

Consider now the following conditions:

B3′ Set 𝚲t = 𝚺1∕2
t D−1

t , 𝚲 = E(𝚲T
t 𝚲t), 𝚪(0) = E[𝚲t(Yt−1 − 𝝁)(Yt−1 − 𝝁)T𝚲T

t ] and 𝚫(0) = E[𝚲tW(Yt−1 − 𝝁)
(Yt−1 − 𝝁)TWT𝚲T

t ]. Assume that the following limits exist:

f1 = limN→∞ N−1
(
1T

N𝚲1N

)
, f2 = limN→∞ N−1tr

[
𝚪(0)

]
, f3 = limN→∞ N−1tr

[
W𝚪(0)

]
,

f4 = limN→∞ N−1tr [𝚫(0)] and, if (j∗, l∗, k∗) ∈ Ωd, d∗ = limN→∞ Πj∗ ,l∗,k∗ .
B4 There exists a non-negative, non-increasing sequence

{
𝜑h

}
h=1,… ,∞ such that

∑∞
h=1𝜑h = Φ < ∞ and, for i < j,

almost surely

|||Corr(Yi,t,Yj,t | t−1)
||| ≤ 𝜑j−i, (21)

Condition B3′ is simply an extension of assumption B3, required for the convergence of the conditional infor-
mation matrix (13) to a valid limiting information matrix, see (22) below. More precisely, the reader can verify

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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596 M. ARMILLOTTA AND K. FOKIANOS

that B3 is just a special case of B3′, when 𝚺t = Dt. The main reason that this assumption is introduced is that,
for the QMLE, the conditional information matrix and the Hessian matrix are, in general, different. This does not
occur in the case studied by Zhu et al. (2017). Analogously to B3, when Yt is continuous-valued random vector,
and we deal with IID errors 𝝃t, B3′ reduces again to the conditions in Zhu et al. (2017, C3).

Assumption B4 could be considered as a contemporaneous weak dependence condition. Indeed, even in the very
simple case of independence model, i.e. 𝜆i,t = 𝛽0, for all i = 1, … ,N, the reader can easily verify that, without
any further constraints, N−1BN = (N), so the limiting variance of the estimator will eventually diverge, since it
depends on the limit of the conditional information matrix. Instead, under B4, N−1BN = (1), and the existence of
the limiting covariance matrix can be shown, as in Lemma 2 and Theorem 3 below. Insights about weak dependence
conditions have been stated in Zhu et al. (2017, p. 1102). When the errors are independent over different nodes and
the past (Zhu et al., 2017, C1), B4 is trivially satisfied, since |||Cov(Yi,t,Yj,t | t−1)

||| =
|||E(𝜉i,t𝜉j,t)

||| = 0, for i ≠ j. See
Section S-5 of the Supplement SM, for an example where B4 is empirically verified. Define 𝜼 ∈ Rm, a non-null
real-valued vector.

Lemma 2. For the linear model (2), suppose 𝛽1 + 𝛽2 < 1 and B1-B2, B3′-B4 hold. Consider SNT and BNT defined
as in (11) and (13) respectively. Assume N−2E(𝜼TsNt)4 < ∞. Then, as

{
N,TN

}
→∞

1. (NTN)−1BNTN

p
−→ B,

2. (NTN)
− 1

2 SNTN

d
−→ N(0m,B),

where B = limN→∞ N−1BN and

B =
⎛
⎜
⎜
⎜
⎝

f1 𝜇f1 𝜇f1

𝜇2f1 + f4 𝜇2f1 + f3

𝜇2f1 + f2

⎞
⎟
⎟
⎟
⎠

. (22)

Note that the assumption N−2E(𝜼TsNt)4 <∞ is not implied by condition B4 which is satisfied provided that (21)
holds true for higher-order moments of the vectors

{
Yt

}
; See Section S-6 in Supplement SM more.

Theorem 3. Consider model (2). Let 𝜽 ∈ 𝚯 ⊂ Rm
+. Suppose that 𝚯 is compact and assume that the true value

𝜽0 belongs to the interior of 𝚯. Suppose that the conditions of Lemma 1 and 2 hold. Then, there exists a fixed
open neighborhood (𝜽0) =

{
𝜽 ∶ |𝜽 − 𝜽0|2 < 𝛿

}
of 𝜽0 such that with probability tending to 1 as

{
N,TN

}
→ ∞,

for the score function (11), the equation SNTN
(𝜽) = 0m has a unique solution, called �̂�, which is consistent and

asymptotically normal:

√
NTN(�̂� − 𝜽0)

d
−→ N

(
0m,H

−1BH−1)
.

The extension of Theorem 3 to the general order linear PNAR(p) model is immediate, by using the well-known
VAR(1) companion matrix; see Section (S-1) in Supplement SM. Assumptions B1, B2 and B4 remain substantially
unaffected, using Debaly and Truquet (2021, lemma 1.1). B3-B3′ can be suitably rearranged similarly to Zhu
et al. (2017, C4) and the result follows by Zhu et al. (2017, supp. mat., sec. 4). We omit the details.

Remark 5. A standard asymptotic inference result, with T → ∞, is obtained for the QMLE �̂�, where the ‘sand-
wich’ covariance is H−1

N BNH−1
N , by Theorem 3, as a special case, when N is fixed. This result requires only the

stationarity conditions of Proposition 1, the compactness of the parameter space, and assuming that the true value of
the parameters belongs to its interior. Such result is proved along the lines of theorem 4.1 in Fokianos et al. (2020).
Similar comments apply also for the log-linear model below. The case, where T fixed and N diverging, cannot be
studied in the framework we consider, since the convergence of the quantities involved in Lemmas 1 and 2 requires
both indexes to diverge together. For details see also the related proofs in the Appendix A.2. This is empirically
confirmed by some numerical bias found in the simulations of Section 4.1, when T is small compared to N.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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COUNT NETWORK AUTOREGRESSION 597

Remark 6. It is worth pointing out that model (2) may be extended by including a feedback process such as as

Yt|t−1 ∼ MCP(𝝀t), 𝝀t = 𝜷0 +GYt−1 + J𝝀t−1, (23)

where J = 𝛼1W + 𝛼2IN and 𝛼1, 𝛼2 ≥ 0 will be a network and autoregressive coefficients respectively, for the past
values of the conditional mean process. Such extension is suitable when the mean process 𝝀t depends on the whole
past history of the count process. When the network dimension is fixed, model (23) is just a special case of Fokianos
et al. (2020, eq. 3), with a specific neighbor structure of the coefficients matrices therein. The stability conditions
and asymptotic properties of the QMLE follow immediately. Note that (23) implies 𝝀t = f (Yt−1,Yt−2, … , ), so
all likelihood based quantities are evaluated recursively (for more, see Fokianos et al., 2020, eq. 12), Therefore,
when N → ∞, verification of Assumptions like B1–B4, which guarantee good large-sample properties of the
corresponding estimators, is quite challenging problem because the dimension of the hidden process grows. See
Section S.3.1 in Supplement SM for comparison. Similarly, the log-linear model (6) can be extended by including
the process 𝝂t−1 in the right-hand side but the same problem persists.

3.2. Log-Linear Model Inference

We now state the analogous result for the log-linear model (7) and the notation corresponds to equations
(16)–(19). Set Zt = log(1N + Yt) and recall that E(Zt) ≈ 𝝁 by the discussion below equation (7). Define
𝜎ij = E(𝜉i,t𝜉j,t) the single element of the error covariance matrix, and ΠL

222 = N−1∑N
i=1E[exp(𝜈i,t)(wT

i (Zt−1 − 𝝁))3],
ΠL

223 = N−1∑N
i=1E[exp(𝜈i,t)(wT

i (Zt−1 − 𝝁))2Yi,t−1], ΠL
233 = N−1∑N

i=1E[exp(𝜈i,t)wT
i (Yt−1 − 𝝁)Y2

i,t−1], Π
L
333 =

N−1∑N
i=1E[exp(𝜈i,t)Y3

i,t−1]. Assumption B1L is the same as assumption B1 in the linear model. This holds also for
B2L, by considering 𝜮

𝝍
= E ||𝝍 t𝝍

T
t
||v instead of 𝜮

𝝃
in B2 above.

B3L Set 𝚪
L
(0) = E[𝚺1∕2

t (Zt−1 − 𝝁)(Zt−1 − 𝝁)T𝚺1∕2
t ] and 𝚫L(0) = E[𝚺1∕2

t W(Zt−1 − 𝝁)(Zt−1 − 𝝁)TWT𝚺1∕2
t ]. Assume

the following limits exist: l1 = limN→∞ N−1E[1T
NDtW(Zt−1 − 𝝁)], l2 = limN→∞ N−1E[1T

NDt(Zt−1 − 𝝁)], 𝜍 =
limN→∞ N−1 ∑

i≠j 𝜎ij, g3 = limN→∞ N−1tr
[
𝚪

L
(0)

]
, g4 = limN→∞ N−1tr

[
W𝚪

L
(0)

]
, g5 = limN→∞ N−1tr

[
𝚫L(0)

]

and, if (j∗, l∗, k∗) ∈ Ωd, d∗ = limN→∞ ΠL
j∗ ,l∗ ,k∗ .

B4L There exists a non-negative, non-increasing sequence
{
𝜙h

}
h=1,… ,∞ such that

∑∞
h=1𝜙h = Φ <∞ and, for i < j,

almost surely

|||Cov(Yi,t,Yj,t | t−1)
||| ≤ 𝜙j−i. (24)

The same remarks made for the case of linear model hold true in this case as well. Condition B4L has been stated
in terms of conditional covariances instead of correlations. This is simply due to the different form of the informa-
tion matrix (19), which only includes the conditional covariance matrix𝚺t. In contrast the linear model information
matrix which corresponds to (15) is given by BN = E(𝜕𝝀T

t ∕𝜕𝜽D−1∕2
t RtD

−1∕2
t 𝜕𝝀t∕𝜕𝜽

T ), where Rt = D−1∕2
t 𝚺tD

−1∕2
t

is conditional correlation matrix, and D−1∕2
t ≺ 𝛽−1

0 IN (elementwise), so that working with the correlations is more
natural and convenient. Numerical verification of assumptions B2L-B3L is given in Section S-4 in Supplement SM,
and complement the results of the linear model. Recall that 𝜼 ∈ Rm, denotes a non-null real-valued vector.

Lemma 3. For the log-linear model (7), suppose ||𝛽1
||+ ||𝛽2

|| < 1 and B1L-B4L hold. Consider SNT and HNT defined
as in (16) and (17) respectively. Assume N−2E(𝜼TsNt)4 < ∞. Then, as

{
N,TN

}
→∞

1. (NTN)−1HNTN

p
−→ H,

2. (NTN)
− 1

2 SNTN

d
−→ N(0m,B),

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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598 M. ARMILLOTTA AND K. FOKIANOS

3. maxj,l,k sup
𝜽∈(𝜽0)

||||
(NTN)−1∑TN

t=1

∑N
i=1

𝜕3li,t(𝜽)
𝜕𝜽j𝜕𝜽l𝜕𝜽k

||||
≤ MNTN

p
−→ M,

where H = limN→∞ N−1HN is non-singular and

H =
⎛
⎜
⎜
⎜
⎝

𝜇y l∗1 l∗2
𝜇(l∗1 + l1) + l5 𝜇(l∗1 + l2) + l4

𝜇(l∗2 + l2) + l3

⎞
⎟
⎟
⎟
⎠

, B =
⎛
⎜
⎜
⎜
⎝

𝜇∗y g∗1 g∗2
𝜇(g∗1 + l1) + g5 𝜇(g∗1 + l2) + g4

𝜇(g∗2 + l2) + g3

⎞
⎟
⎟
⎟
⎠

, (25)

where 𝜇y = E(Yi,t), l∗1 = 𝜇𝜇y+ l1, l∗2 = 𝜇𝜇y+ l2, (l3, l4, l5) equal (g3, g4, g5) respectively, when 𝚺t = Dt, 𝜇
∗
y = 𝜇y+𝜍,

g∗1 = 𝜇𝜇∗y + l1 and g∗2 = 𝜇𝜇∗y + l2.

Theorem 4. Consider model (7). Let 𝜽 ∈ 𝚯 ⊂ Rm. Suppose that 𝚯 is compact and assume that the true value
𝜽0 belongs to the interior of 𝚯. Suppose that the conditions of Lemma 3 hold. Then, there exists a fixed open
neighborhood (𝜽0) =

{
𝜽 ∶ |𝜽 − 𝜽0|2 < 𝛿

}
of 𝜽0 such that with probability tending to 1 as

{
N,TN

}
→ ∞,

for the score function (16), the equation SNTN
(𝜽) = 0m has a unique solution, called �̂�, which is consistent and

asymptotically normal:

√
NTN(�̂� − 𝜽0)

d
−→ N(0m,H

−1BH−1).

The conclusion follows arguing as in the proof of Theorem 3 above. An analogous result can be established for
p > 1, since also log(1N + Yt) in (7) can be approximately rewritten as a VAR(1) model; see also Section S-1 in
Supplement SM.

3.3. Estimation of Covariance Matrix

We provide a consistent estimator for the limiting covariance matrix of the QMLE. Toward this goal, define the
following matrix

B̂NT (�̂�) =
T∑

t=1

sNt(�̂�)sT
Nt(�̂�). (26)

Let V ∶= H−1BH−1 and VNT (�̂�) ∶= (NT)H−1
NT (�̂�)B̂NT (�̂�)H

−1
NT (�̂�). The following theorem shows how to consistently

estimate the covariance matrix obtained by Theorems 3 and 4 by using the usual sandwich estimator.

Theorem 5. Consider model (2) (respectively, model (7)). Suppose the conditions of Theorem 3 (respectively,

Theorem 4) hold true. Then, as
{

N,TN

}
→ ∞, VNTN

(�̂�)
p
−→ V.

3.4. Effect of Network Misspecification

We now study the effect of network misspecification. Consider, for instance, model (2). Suppose the data Yi,t

are generated by the true adjacency matrix A. From Section 3, �̂� is consistent estimator of 𝜽. Suppose that the
adjacency matrix A is misspecified and the true network matrix is A∗ = (a∗ij). Accordingly, let W∗ = (w∗

ij) be the
row-normalized adjacency matrix A∗ and 𝜆∗i,t(𝜽) defined as in (1) but with the elements of W∗ instead of W. Then,

the QMLE, in this case, is given by �̂�
∗
= arg max

𝜽∈𝛬l∗NT (𝜽) where ł∗NT (𝜽) =
∑T

t=1

∑N
i=1

(
Yi,t log 𝜆∗i,t(𝜽) − 𝜆∗i,t(𝜽)

)
.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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Corollary 1. Assume the conditions of Theorem 3 hold. Define ΔN(W,W∗) =
∑N

i,j=1
|||wij − w∗

ij
||| the total amount

of misspecification of W. Assume ΔN(W,W∗) = o(1), then as
{

N,TN

}
→∞ �̂�

∗ p
−→ 𝜽0.

The proof is postponed to Section S-3.5 of Supplement SM. Corollary 1 shows that, under network misspec-
ification, the QMLE is still consistent estimator provided that the amount of misspecification is under control,
i.e., limN→∞ ΔN(W,W∗) = 0. For example ΔN(W,W∗) ≤ C∕

√
N or C∕ log(N) for some constant C > 0 implies

Corollary 1. Similar results hold for p > 1 and log-linear models (9).

3.5. Further Discussion

Some further issues are described next.

3.5.1. Copula Estimation
Copula estimation is briefly discussed in the Supplement SM but a thorough study of the problem requires separate
treatment. In particular, Section S-9 of the Supplement SM contains results of a simulation study after employing
a heuristic parametric bootstrap estimation algorithm. Such method potentially can be useful to select an adequate
copula structure and provide an estimator of the associated copula parameter.

3.5.2. Efficiency of QMLE
The QMLE based on (10), is general inefficient. Therefore, in Section S-7 of the Supplement SM, a novel regres-
sion estimator is proposed by considering a two-step Generalized Estimating Equations (GEE). During the first
step, the mean parameters are estimated by QMLE and employed to compute a working weighting covariance
matrix. A second step of estimation is then carried out by employing the obtained weighting matrix. Numerical
studies show that the GEE is more efficient than the QMLE, especially when there exists considerable correlation
among the counts. In a recent paper by Aknouche and Francq (2023) a similar kind of estimators, but for univariate
models, have been shown to be optimal QMLEs, under suitable regularity condition.

3.5.3. State-space modeling
An alternative approach to the methodology developed in this article is to consider a state-space model as in the
work by Zhang et al. (2017), for example. These authors develop methodology for the log-linear model (6) by
adding Gaussian noise to the right hand side of the model defining equation. In addition, marginal counts are
assumed to be Poisson(𝜆i,t) distributed – recall the notation of Section 2. The authors develop particle filtering
and smoothing methods together with Monte Carlo Expectation Maximization algorithm to advance inference. A
fully Bayesian approach, related to network models, is taken by Chen et al. (2019) who introduce models within
the framework of dynamic GLM (see West and Harrison, 1997), that include time-varying covariates for Poisson
conditionally distributed time series; for more on the Bayesian point of view see West (2020).

4. APPLICATIONS

4.1. Simulations

We study the finite sample behavior of the QMLE for models (4) and (9). We run a simulation study with S = 1000
repetitions and different time series length and network dimension. We consider the cases p = (1, 2). The adjacency
matrix is generated by using one of the most popular network structure, the stochastic block model (SBM):

Example 1. (SBM). A block label (k = 1, … ,K = 5) is assigned for each node with equal probability and K is
the total number of blocks. Then, set P(aij = 1) = N−0.3 if i and j belong to the same block, and P(aij = 1) = N−1

otherwise. Practically, the model assumes that nodes within the same block are more likely to be connected with
respect to nodes from different blocks.

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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600 M. ARMILLOTTA AND K. FOKIANOS

For details on SBM see Wang and Wong (1987), Nowicki and Snijders (2001) and Zhao et al. (2012), among oth-
ers. The SBM model with K = 5 blocks is generated by using the igraph R package (Csardi and Nepusz, 2006).
The network density is set equal to 1%. We performed simulations with a network density equal to 0.3% and
0.5%, as well, but we obtained similar results, hence we do not report them here. The parameters are set to
(𝛽0, 𝛽1, 𝛽2)T = (0.2, 0.3, 0.2)T . The observed time series are generated using the copula-based algorithm of
Section 2.1. The specified copula is Gaussian, say CGa

R (… ), with correlation matrix R = (Rij), where Rij = 𝜌|i−j|,
the so called first-order autoregressive correlation matrix, henceforth AR-1. Then CGa

R (… ) = CGa(… , 𝜌).
Tables I and II summarize the simulation results for models (2) and (7) respectively. For each simulated dataset,
the QMLE estimation of unknown parameters has been computed by using the R package nloptr (John-
son, 2023). It allows to run constrained optimization; for the linear model (4), for example, the quasi log-likelihood
(10) is maximized under the positive parameters constraint. Additional findings are given in Section S-8 of the
Supplement SM – Tables S1–S4.

Then, the estimates for parameters and their SEs (in brackets) are obtained by averaging out the results from all
simulations; see the first two rows of Tables I and II. The third row below each coefficient shows the percentage
frequency of t-tests rejecting H0 ∶ 𝛽 = 0 at nominal level 5% and it is calculated over the S simulations. We also
report the percentage of cases where various information criteria select the correct generating model. In this study,
we employ the Akaike (AIC), the Bayesian (BIC) and the Quasi (QIC) information criteria. The latter is a special
case of the AIC which takes into account that estimation is done by quasi-likelihood methods. See Pan (2001) for
more details.

We observe that the estimates are close to the real values and the SEs are small for all the cases considered.
When there is a strong correlation between count variables Yi,t – see Table I – and T is small when compared to the
network size N, then the estimates of the network effect 𝛽1 have slight bias. The same conclusion is drawn from
Table S1. Instead, when both T and N are reasonably large (or at least T is large), then the approximation to the
true values of the parameters is adequate. This fact confirms the related asymptotic results obtained in Section 3

Table I. Estimators obtained from S = 1000 simulations of model (2), for various values of N and T

Dim. p = 1 p = 2 IC (%)

N T 𝛽0 𝛽1 𝛽2 𝛽0 𝛽11 𝛽21 𝛽12 𝛽22 AIC BIC QIC

20 100 0.201 0.296 0.199 0.197 0.292 0.196 0.009 0.007 94.1.0 99.5 95.1
(0.019) (0.036) (0.028) (0.021) (0.037) (0.029) (0.031) (0.023)

100 100 100 100 100 100 1.4 1.5
200 0.200 0.297 0.199 0.197 0.294 0.197 0.008 0.005 93.9 99.9 95.2

(0.013) (0.027) (0.020) (0.014) (0.028) (0.021) (0.023) (0.016)
100 100 100 100 100 100 1.5 1.6

100 20 0.203 0.292 0.198 0.196 0.286 0.195 0.015 0.008 93.1 97.1 93.5
(0.024) (0.048) (0.028) (0.029) (0.050) (0.029) (0.046) (0.024)

100 100 100 100 100 100 2.9 2.2
50 0.202 0.294 0.199 0.197 0.290 0.197 0.011 0.005 91.4 98.8 94.1

(0.015) (0.032) (0.018) (0.018) (0.033) (0.019) (0.031) (0.015)
100 100 100 100 100 100 3.3 2.0

100 0.201 0.299 0.200 0.198 0.296 0.198 0.008 0.004 91.9 99.2 94.9
(0.011) (0.023) (0.013) (0.013) (0.023) (0.013) (0.022) (0.011)

100 100 100 100 100 100 2.0 1.8
200 0.200 0.299 0.200 0.198 0.298 0.199 0.005 0.003 92.3 99.7 95.2

(0.008) (0.016) (0.009) (0.009) (0.017) (0.009) (0.015) (0.008)
100 100 100 100 100 100 2.0 1.6

Note: Network generated by Ex. 1. Data are generated by using the Gaussian AR-1 copula, with 𝜌 = 0.5 and p = 1. Model (4) is also fitted
using p = 2 to check the performance of various information criteria.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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COUNT NETWORK AUTOREGRESSION 601

Table II. Estimators obtained from S = 1000 simulations of model (7), for various values of N and T .

Dim. p = 1 p = 2 IC (%)

N T 𝛽0 𝛽1 𝛽2 𝛽0 𝛽11 𝛽21 𝛽12 𝛽22 AIC BIC QIC

20 100 0.206 0.298 0.196 0.208 0.298 0.196 −0.002 −0.001 81.6 97.5 86.1
(0.061) (0.040) (0.034) (0.072) (0.041) (0.035) (0.040) (0.034)

91.3 100 100 81.3 100 99.9 2.0 2.7
200 0.203 0.298 0.199 0.203 0.298 0.199 0.001 −0.001 80.7 98.9 85.8

(0.043) (0.030) (0.025) (0.049) (0.032) (0.025) (0.032) (0.024)
99.5 100 100 98.1 100 100 2.3 2.4

100 20 0.209 0.292 0.196 0.215 0.293 0.197 −0.006 −0.002 74.6 88.2 80.7
(0.082) (0.069) (0.036) (0.097) (0.069) (0.037) (0.067) (0.036)

70.0 97.5 99.9 59.7 97.4 99.9 3.8 3.3
50 0.204 0.296 0.200 0.207 0.296 0.200 −0.004 −0.001 78.4 94.6 86.6

(0.053) (0.045) (0.023) (0.065) (0.045) (0.023) (0.045) (0.022)
96.3 100 100 86.9 100 100 2.9 2.3

100 0.203 0.297 0.199 0.204 0.297 0.200 0.000 −0.001 78.9 97.2 85.7
(0.037) (0.031) (0.016) (0.046) (0.032) (0.016) (0.031) (0.016)

100 100 100 99.4 100 100 3.1 2.0
200 0.201 0.300 0.199 0.203 0.300 0.199 −0.002 0.000 80.5 97.5 88.1

(0.026) (0.022) (0.011) (0.033) (0.022) (0.011) (0.022) (0.011)
100 100 100 100 100 100 2.9 2.7

Note: Network generated by Ex. 1. Data are generated by using the Gaussian AR-1 copula, with 𝜌 = 0.5 and p = 1. Model (9) is also fitted
using p = 2 to check the performance of various information criteria.

by requiring N → ∞ and TN → ∞. Standard errors reduce as T increases. Regarding estimators of the log-linear
model (see Tables II and S3), we obtain similar results.

The t-tests and percentage of right selections due to various information criteria provide empirical confirmation
for the model selection procedure. Based on these results, the BIC provides the best selection procedure for the case
of the linear model; its success selection rate is about 99%; this is so because it tends to select models with fewer
parameters. In sharp contrast, the AIC is not performing as well as BIC but still selects the right model around
92% of time. The QIC provides a good balance between the other two information criteria; its value is around
95%. Moreover, it has the advantage to be more robust, especially when employed to misspecified models. This
fact is further confirmed by the results concerning the log-linear model, even though the rate of right selections
for the QIC does not exceed 88%. To validate these results, we consider the case where all series are independent
(Gaussian copula with 𝜌 = 0). Then QMLE provides satisfactory results if N is large enough, even if T is small
(see Tables S2 and S4). Moreover, the slight bias reported, for some coefficients, when 𝜌 > 0, is not observed in
this case. Intuitively, the reason lies on the complexity of the network relations, which does not grow with N, since
variables concerning different nodes are independent. Furthermore, the QMLE for this case coincides to the true
likelihood function. From the QQ-plot shown in Figures S13 and S14 we can conclude that, with N and T large
enough, the asserted asymptotic normality is quite adequate. A more extensive discussion and further simulation
results can be found in Section S-8 of the Supplement SM.

4.2. Data analysis

The application on real data concerns the monthly number of burglaries on the south side of Chicago from 2010
to 2015 (T = 72). The counts are registered for the N = 552 census block groups. The data are taken by Clark
and Dixon (2021), https://github.com/nick3703/Chicago-Data. The undirected network structure arises naturally,
as an edge between block i and j is set if the locations share (at least) a border. In this case, the network connection

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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602 M. ARMILLOTTA AND K. FOKIANOS

Figure 1. Census block groups in South Chicago

is well-represented by the geographic map of the census blocks in Figure 1. The density of the network is 1.74%.
The median degree is 5.

Some time series of burglaries are plotted in Figure 2. The maximum number of burglaries in a month in a
census block is 17. We fit the linear and log-linear PNAR(1) and PNAR(2) models. The results are summarized in
Tables III and IV. All fitted models produce significant results. The magnitude of the network effects 𝛽11 and 𝛽12

seems reasonable, as an increasing number of burglaries in a block can lead to a growth in the same type of crime
committed in a close area. The lagged effects have a positive impact on the counts. Interestingly, the log-linear
model is able to account for the general downward trend registered from 2010 to 2015 for this type of crime in the
area analyzed. All the information criteria select the PNAR(2) models, in accordance with the significance of the
estimates.

We compare the out-sample forecasting performance of the linear PNAR model with p = 1 vs. a baseline
STARMA(1,1) model (Pfeifer and Deutrch, 1980), which after some rearrangement is defined as follows

Yt = 𝜹0 +
(
𝜙1W + 𝜙0IN

)
Yt−1 +

(
𝜃1W + 𝜃0IN

)
𝝐t−1 + 𝝐t,

where 𝝐t are independent normal vectors, and 𝜹0, 𝜙i, 𝜃i, i = 0, 1 are unknown parameters. The Root Mean Square
Error (RMSE) obtained by both models is computed. For the PNAR model the RMSE is 0.038 which is less than
0.079 obtained by fitting the STARMA(1,1) model. This shows significant accuracy improvement of the prediction
for the PNAR(1) model. In addition, PNAR avoids estimation of moving average parameters.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12728
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Figure 2. Monthly burglaries count time series for some census block groups

Table III. Estimation results for Chicago crime data

Estimate SE (×102) p-value Estimate SE (×102) p-value

Linear PNAR(1) Log-linear PNAR(1)
𝛽0 0.4551 2.1607 <0.01 −0.5158 3.8461 <0.01
𝛽1 0.3215 1.2544 <0.01 0.4963 2.8952 <0.01
𝛽2 0.2836 0.8224 <0.01 0.5027 1.2105 <0.01

Linear PNAR(2) Log-linear PNAR(2)
𝛽0 0.3209 1.8931 <0.01 −0.5059 4.7605 <0.01
𝛽11 0.2076 1.1742 <0.01 0.2384 3.4711 <0.01
𝛽21 0.2287 0.7408 <0.01 0.3906 1.2892 <0.01
𝛽12 0.1191 1.4712 <0.01 0.0969 3.3404 <0.01
𝛽22 0.1626 0.7654 <0.01 0.2731 1.2465 <0.01

Table IV. Information criteria for Chicago crime data

AIC×10−3 BIC×10−3 QIC×10−3

Linear Log-linear Linear Log-linear Linear Log-linear

PNAR(1) 115.06 115.37 115.07 115.38 115.11 115.44
PNAR(2) 111.70 112.58 111.72 112.60 111.76 112.68

Note: Smaller values in bold.

Estimation of the copula is advanced according to the algorithm of Section S-9 of the Supplement SM. The
Gaussian AR-1 copula, described in Section 4.1, is compared vs. the Clayton copula, over a grid of values for the
associated copula parameter, with 100 bootstrap simulations. As a preliminary step for the estimation of Gaussian
AR-1 copula we need to reorder the observations Yi,t for i = 1, … ,N to mimic the structure of the AR-1 copula
correlation matrix R = (Rij), where Rij = 𝜌|i−j|. A coherent ordering for Yi,t will be the one where the empirical
correlation matrix of Yt, say Re, contains highest correlations close to the main diagonal and then progressively
smaller values where the distance from the main diagonal increases. This is a combinatorial problem and for
small N it is not hard to solve it by trying all the possible orderings. However, when N grows, we can recover

J. Time Ser. Anal. 45: 584–612 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12728 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Figure 3. Empirical correlation matrix for the Chicago crime data. Left: random ordering of the variables. Right: matrix
reordered through ARSA optimization

such ordering by defining the dissimilarity matrix De = 1N×N − Re, where 1N×N is the N × N matrix of ones,
and appealing to the concept of anti-Robinson matrix (Hahsler et al., 2008, sec. 2.1). In this type of matrix, the
smallest dissimilarity (largest correlation) values appear close to the main diagonal and the largest dissimilarity
(smallest correlation) values appear far from it. Hence, by defining a loss function that quantifies the divergence of
a matrix from the anti-Robinson matrix (Hahsler et al., 2008, sec. 2.2) reordering of the observations is solved by
heuristic optimization employing the Anti-Robinson Simulated Annealing (ARSA); see Brusco et al. (2008). TheR
implementation of the algorithm is easily performed by using the package seriation (Hahsler et al., 2008). The
resulting ordering is quite satisfactorily and is plotted in Figure 3 (right) against a random ordering configuration
(left).

Using this ordering the Gaussian AR-1 copula is selected 94% and 95% of the times, for the linear and the
log-linear PNAR(1) model respectively. The estimated copula parameter is �̂� = 0.689 and �̂� = 0.612, for the linear
and log-linear model respectively, with small SEs 0.064 and 0.062, correspondingly.

A further estimation step for the PNAR(1) models is performed by applying the two-step GEE estimation
method discussed in Section S-7 in Supplement SM. The QMLE estimates are used as starting values of the
two-step procedure. An AR-1 working correlation matrix P(𝛕) is selected, with 𝜏1 as the estimator of the cor-
relation parameter. To compare the relative efficiency of the GEE (�̃�) vs. QMLE (�̂�), their bootstrap SEs have
been calculated using 100 simulations by using the estimated copula. We compute the ratio of the SEs obtained,
q(�̂�, �̃�) =

∑m
h=1SE(𝛽h)∕

∑m
h=1SE(𝛽h). The results are q(�̂�, �̃�) = 1.019 and q(�̂�, �̃�) = 1.002, for the linear and

log-liner model respectively. We note a marginal gain in efficiency from the GEE estimation; this is probably due
the a small value of the estimated correlation parameter 𝜏, which is found to be around 0.008 and 0.005 on aver-
age, for linear and log-linear model respectively. Using different kind of estimator for the correlation parameter
might yield significant efficiency improvement but a further study in this direction is needed.
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APPENDIX A: APPENDIX

Recall that C is a generic constant and Cr is a constant depending on r ∈ N. See also the notation paragraph in
the introductory Section 1.

A.1. Proof of Theorem 1
Recall from Zhu et al. (2017, def. 1) that  =

{
𝝎 ∈ R∞ ∶ 𝝎∞ =

∑||𝜔i
|| <∞

}
, where 𝝎 = (𝜔i ∈ R ∶ 1 ≤

i < ∞)T ∈ R∞. For each 𝝎 ∈  , let 𝝎N = (𝜔1, … , 𝜔N)T ∈ RN be the its truncated N-dimensional version. By
considering the VAR(1) representation for the PNAR(1) model (2), defined in Section S-1 in Supplement SM,
the process can be rewritten by backward substitution, Yt = (IN −G)−1𝜷0 +

∑∞
j=0Gj

𝝃t−j. For sake of clarity we
show the result for the PNAR(1) model. However, the general p-lags parallel result extends straightforwardly,
by considering the companion VAR(1) representation form (Section S-1 in Supplement SM) of the linear
PNAR(p) model. By Proposition 2, it holds that E(Yi,t) ≤ 𝜇 = 𝛽0∕(1 − 𝛽1 − 𝛽2) for all 1 ≤ i < ∞ and, since
𝝃t = Yt − 𝝀t, E ||𝜉i,t

|| ≤ 2E(Yi,t) ≤ 2𝜇 = c < ∞. Similar uniform bounds are obtained for moments of order r > 1.

For any 𝝎 ∈  , E ||𝜷0 + 𝝃t
||v ⪯ (𝛽0 + c)1N = C1N < ∞, Gj1N = (𝛽1 + 𝛽2)j1N and E |||𝝎

T
N

∑∞
j=0Gj(𝜷0 + 𝝃t−j)

||| ≤
C𝜔∞

∑∞
j=0(𝛽1 + 𝛽2)j = C2. Then, by Monotone Convergence Theorem (MCT), limN→∞ 𝝎

T
NYt exists and is finite

with probability 1, moreover Y𝜔
t = limN→∞ 𝝎

T
NYt is strictly stationary and therefore

{
Yt

}
is strictly stationary,

following Zhu et al. (2017, def. 1). To verify the uniqueness of the solution, take another stationary solution
Ỹt to the PNAR model with finite moments of any order. Then, E(Ỹt) ⪯ C11N , where C1 is a constant and

E ||𝝎
T
NYt − 𝝎T

NỸt
|| =

|||
∑∞

j=m𝝎
T
N

∑∞
j=0Gj(𝜷0 + 𝝃t−j) − 𝝎T

NGmỸt−m
||| ≤ 𝜔∞

∑∞
j=m[C2(𝛽1 + 𝛽2)j + C1(𝛽1 + 𝛽2)m], for any

N and weight 𝝎. Since m is arbitrary, Y𝜔
t = Ỹ

𝜔

t with probability one. □

A.2. Proof of Lemma 1
We split the proof accordingly to each single result given in Lemma 1.

Proof of (1). Define Wt = (Yt,Yt−1)T , Ŵ
t

t−J =
(

Ŷ
t

t−J , Ŷ
t−1

t−J

)T

∶= f (𝝃t, … , 𝝃t−J), Ŷi,t, �̂�i,t the ith elements

of Ŷ
t

t−J and �̂�
t

t−J . Consider the following triangular array
{

gNt(Wt) ∶ 1 ≤ t ≤ TN ,N ≥ 1
}

, where TN → ∞ as
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N → ∞. For any 𝜼 ∈ Rm, gNt(Wt) = N−1𝜼T 𝜕𝝀T
t

𝜕𝜽
Ct

𝜕𝝀t

𝜕𝜽T 𝜼 =
∑m

r=1

∑m
l=1𝜂r𝜂lhrl,t where N−1HNt = (hrl,t)1≤r,l≤m. We

take the most complicated element, h22,t, the result is analogously proven for the other elements. Define l1,i,t =
|||(w

T
i Yt−1)2Yi,t(�̂�i,t + 𝜆i,t)

|||, l2,i,t =
|||(w

T
i Yt−1)2𝜆2

i,t
||| and l3,i,t =

|||Ŷi,t𝜆
2
i,t(Yi,t−1 + Ŷi,t−1)

∑N
j=1wij(Yj,t−1 + Ŷj,t−1)

|||. Addition-

ally, the equality |||�̂�i,t − 𝜆i,t
||| =

|||Yi,t − Ŷi,t
||| is a consequence of the constructions in Lemma S2 in Supplement SM.

Then

|||h22,t − ht
22,t−J

||| =
||||||

1
N

N∑

i=1

(wT
i Yt−1)2Yi,t

𝜆2
i,t

− 1
N

N∑

i=1

(wT
i Ŷ

t−1

t−J)
2Ŷi,t

�̂�
2

i,t

||||||

≤
𝛽−4

0

N

N∑

i=1

|||(w
T
i Yt−1)2Yi,t�̂�

2

i,t − (w
T
i Ŷ

t−1

t−J)
2Ŷi,t𝜆

2
i,t
|||

≤
𝛽−4

0

N

N∑

i=1

||||
(wT

i Yt−1)2Yi,t(�̂�
2

i,t − 𝜆2
i,t) +

[
(wT

i Yt−1)2Yi,t − (wT
i Ŷ

t−1

t−J)
2Ŷi,t

]
𝜆2

i,t

||||

≤
𝛽−4

0

N

||||||

N∑

i=1

(wT
i Yt−1)2Yi,t(�̂�i,t + 𝜆i,t)(�̂�i,t − 𝜆i,t)

||||||
+

𝛽−4
0

N

||||||

N∑

i=1

(wT
i Yt−1)2𝜆2

i,t(Yi,t − Ŷi,t)
||||||

+
𝛽−4

0

N

||||||

N∑

i=1

Ŷi,t𝜆
2
i,t

[(
wT

i Yt−1

)2 −
(

wT
i Ŷ

t−1

t−J

)2
]||||||

≤
𝛽−4

0

N

N∑

i=1

l1it
|||�̂�i,t − 𝜆i,t

||| +
𝛽−4

0

N

N∑

i=1

l2it
|||Yi,t − Ŷi,t

|||

+
𝛽−4

0

N

N∑

i=1

Ŷi,t𝜆
2
i,t

||||

(
wT

i Yt−1

)
+
(

wT
i Ŷ

t−1

t−J

)||||

||||

(
wT

i Yt−1

)
−
(

wT
i Ŷ

t−1

t−J

)||||

≤
𝛽−4

0

N

N∑

i=1

l1it
|||�̂�i,t − 𝜆i,t

||| +
𝛽−4

0

N

N∑

i=1

l2it
|||Yi,t − Ŷi,t

|||

+
𝛽−4

0

N

N∑

i=1

Ŷi,t𝜆
2
i,t

||||||

N∑

j=1

wij

(
Yj,t−1 + Ŷj,t−1

)||||||

||||||

N∑

j=1

wij

(
Yj,t−1 − Ŷj,t−1

)||||||

≤
𝛽−4

0

N

N∑

i=1

(
l1,i,t + l2,i,t

) |||Yi,t − Ŷi,t
||| +

𝛽−4
0

N

N∑

i=1

l3,i,t

||||||

N∑

j=1

wij

(
Yj,t−1 − Ŷj,t−1

)||||||
.

Set 1∕a + 1∕b = 1∕2 and 1∕q + 1∕p + 1∕n = 1∕a. By Cauchy–Schwartz inequality, as wij > 0 for

j = 1, … ,N and
∑N

j=1wij = 1 we have that (wT
i Yt−1)2 =

(∑N
j=1wijYj,t−1

)2
≤

∑N
j=1wijY

2
j,t−1. As a conse-

quence, max1≤i≤N
‖‖(wT

i Yt−1)2‖‖q
≤ max1≤i≤N

(∑N
j=1wij

‖‖‖Y2
j,t−1

‖‖‖q

)
≤ supi≥1

‖‖‖Y2
i,t
‖‖‖q
≤ C1∕q

2q < ∞, by Propo-

sition 2. Moreover, supi≥1
‖‖‖𝜆

2
i,t
‖‖‖n
≤ supi≥1

‖‖‖Y2
i,t
‖‖‖n
≤ Cn, by the conditional Jensen’s inequality. Similarly,

supi≥1
‖‖‖�̂�

2

i,t
‖‖‖n
≤ supi≥1

‖‖‖Ŷ2
i,t
‖‖‖n

. An application of Lemma S-2 in Supplement SM provides supi≥1
‖‖‖Yi,t − Ŷi,t

‖‖‖b
≤

dJ∑t−J−1
j=0 dj supi≥1

‖‖𝜉i,t
‖‖b
≤ dJ2C1∕b

b ∕(1 − d). By an analogous recursion argument, it holds that supi≥1
‖‖‖Ŷ2

i,t
‖‖‖n
≤

2𝛽0

∑∞
j=0dj +

∑∞
j=0dj supi≥1

‖‖𝜉i,t
‖‖n
≤ (2𝛽0 + 2C1∕n

n )∕(1 − d) ∶= Δ < ∞. It is immediate to see that, by Holder’s

inequality supi≥1
‖‖l1,i,t

‖‖a
≤ supi≥1

‖‖(wT
i Yt−1)2‖‖q

‖‖Yi,t
‖‖p

(‖‖‖�̂�i,t
‖‖‖n
+ ‖‖‖�̂�i,t

‖‖‖n

)
< l1 < ∞. In the same way we can

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 584–612 (2024)
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conclude that supi≥1
‖‖l2,i,t

‖‖q
< l2 <∞ and supi≥1

‖‖l3,i,t
‖‖q

< l3 <∞. Then, by Minkowski inequality

‖‖‖h22,t − ht
22,t−J

‖‖‖2
≤

𝛽−4
0

N

N∑

i=1

‖‖l1,i,t + l2,i,t
‖‖a

‖‖‖Yi,t − Ŷi,t
‖‖‖b
+

𝛽−4
0

N

N∑

i=1

‖‖l3,i,t
‖‖a

N∑

j=1

wij
‖‖‖Yj,t−1 − Ŷj,t−1

‖‖‖b

≤ 𝛽−4
0 max

1≤i≤N

(‖‖l1,i,t
‖‖a
+ ‖‖l2,i,t

‖‖a

) ‖‖‖Yi,t − Ŷi,t
‖‖‖b
+ 𝛽−4

0 max
1≤i≤N

‖‖l3,i,t
‖‖a

‖‖‖Yi,t−1 − Ŷi,t−1
‖‖‖b

≤ 𝛽−4
0

(
l1 + l2 + l3

)
2C1∕b

b dJ−1
t−J−1∑

j=0

dj
≤

𝛽−4
0

(
l1 + l2 + l3

)
2C1∕b

b

1 − d
dJ−1 ∶= c22𝜈J ,

with 𝜈J = dJ−1. By the definition in B1, set N
t−J,t+J = 𝜎

(
𝜉i,t ∶ 1 ≤ i ≤ N, t − J ≤ t ≤ t + J

)
. Since

E
[
gNt(Wt)|N

t−J,t+J

]
is the optimal N

t−J,t+J-measurable approximation to gNt(Wt) in the L2-norm and gNt(Ŵ
t

t−J) is


N
t−J,t+J-measurable, it follows that

‖‖‖‖
gNt(Wt) − E

[
gNt(Wt)|N

t−J,t+J

]‖‖‖‖2
≤
‖‖‖gNt(Wt) − gNt(Ŵ

t

t−J)
‖‖‖2

≤

m∑

r=1

m∑

l=1

𝜂k𝜂l
‖‖‖hrlt − ĥt

rl,t−J
‖‖‖2

≤ cNt𝜈j ,

where cNt =
∑m

r=1

∑m
l=1𝜂r𝜂lcrl and 𝜈J = dJ−1 → 0 as J →∞, establishing Lp-near epoch dependence (Lp-NED), with

p ∈ [1, 2], for the triangular array
{

XNt = gNt(Wt) − E
[
gNt(Wt)

]}
; see Andrews (1988). Moreover, by a similar

argument above, it is easy to see that E|||XNt
|||
2
< ∞, by the finiteness of all the moments of the process Yt. Then,

using B1 and the argument in Andrews (1988, p. 464), we have that
{

XNt

}
is a uniformly integrable L1-mixingale.

Furthermore, since limN→∞ T−1
N

∑TN

t=1cNt < ∞ the law of large number of theorem 2 in Andrews (1988) provides

the desired result (NTN)−1
𝜼

THNTN
𝜼

p
−→ 𝜼

TH𝜼 as
{

N,TN

}
→ ∞. We only need to show the existence of the matrix

H according to (20). Consider the single elements of the matrix HN :

H11 = E

(
N∑

i=1

1
𝜆i,t

)

, H12 = E

(
N∑

i=1

wT
i Yt−1

𝜆i,t

)

, H13 = E

(
N∑

i=1

Yi,t−1

𝜆i,t

)

,

H22 = E

[
N∑

i=1

(
wT

i Yt−1

)2

𝜆i,t

]

, H23 = E

(
N∑

i=1

wT
i Yt−1Yi,t−1

𝜆i,t

)

,

H33 = E

[
N∑

i=1

(
Yi,t−1

)2

𝜆i,t

]

.
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610 M. ARMILLOTTA AND K. FOKIANOS

Note that the linear model (2) can be rewritten has Yt = 𝝁 +
∑∞

j=0Gj
𝝃t−j = 𝝁 + Ỹt where 𝝁 = (IN −G)−1𝛽01 =

𝛽0(1 − 𝛽1 − 𝛽2)−11 and 𝝃t is MDS. As N → ∞,

1
N

H11 = E
( 1

N
1TD−1

t 1
)
= 1

N
tr(𝚲)→ d1, (A-1)

by assumption B3. The second term

1
N

H12 = E
( 1

N
1TD−1

t WYt−1

)
= 1

N
H12a +

1
N

H12b,

where H12a∕N = N−1E
(
1TD−1

t W𝝁
)

= N−11T𝚲W(IN −G)−1𝛽01 = 𝛽0N−11T𝚲W(1 − 𝛽1 − 𝛽2)−11 =
𝜇1T𝚲W1∕N = 𝜇1T𝚲1∕N → 𝜇d1, as N → ∞. Define ei,t =

|||𝝃
T
t−1−i

|||v (G
T )iWT1. Then,

||||

H12b

N

||||
≤

1
N

[
E
(
1TD−1

t WỸt−1

)2
]1∕2
≤

𝛽−1
0

N

[
E
(
1TW ||Ỹt−1

||v
)2
]1∕2

(A-2)

≤
𝛽−1

0

N

∞∑

i,j=0

E1∕2
(

1TWGj |||𝝃t−1−j
|||v
|||𝝃

T
t−1−i

|||v (G
T )iWT1

)

≤
𝛽−1

0

N

∞∑

i,j=0

E1∕4(e2
j,t)E

1∕4(e2
i,t) =

𝛽−1
0

N

[ ∞∑

j=0

E1∕4(e2
j,t)

]2

≤ 𝛽−1
0

[ ∞∑

j=0

1
√

N
E1∕4

(
1TWGj |||𝝃t−1−j𝝃

T
t−1−j

|||v (G
T )jWT1

)]2

≤ 𝛽−1
0

[ ∞∑

j=0

1
√

N

(
1TWGj

𝜮𝝃(GT )jWT1
)1∕4

]2

,

converges to 0, as N → ∞, where the first inequality holds by Minkowski and Jensen’s inequalities, the second
inequality is a consequence of D−1

t ⪯ 𝛽−1
0 IN and the fourth is deduced by Cauchy inequality. The convergence

follows by applying Lemma S1 in Supplement SM. Then, H12∕N → 𝜇d1 as N →∞. For the same reason H13∕N →
𝜇d1. We move to the following term.

H22

N
= E

( 1
N

YT
t−1WTD−1

t WYt−1

)
=

H22a

N
+

H22b

N
+

H22c

N
+

H22d

N
,

where, as N → ∞, H22a∕N = E
(
N−1

𝝁
TWTD−1

t W𝝁
)
= 𝜇21TWT𝚲W1∕N = 𝜇2tr(𝚲)∕N → 𝜇2d1 and H22b∕N =

H22c∕N = 𝜇H12b∕N → 0. Finally,

H22d

N
= 1

N
E
(

Ỹ
T

t−1WTD−1
t WỸt−1

)
= 1

N
tr E

[
D−1∕2

t W
(
Yt−1 − 𝝁

) (
Yt−1 − 𝝁

)T
WTD−1∕2

t

]
→ d4,

as N → ∞, using B3. So H22∕N → 𝜇2d1 + d4 as N → ∞. For the same reason H23∕N → 𝜇2d1 + d3 and
H33∕N → 𝜇2d1 + d2. Finally, note that H is positive definite, and nonsingular, as HN∕N is positive definite. □

Proof of (2). For all non-null 𝜼 ∈ Rm, the triangular array
{
𝜼

TsNt∕N ∶ 1 ≤ t ≤ TN ,N ≥ 1
}

is a martingale dif-
ference array. Moreover, E(𝜼TsNt∕N)2 < ∞, by Cauchy inequality and the boundedness of all the moments of
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COUNT NETWORK AUTOREGRESSION 611

{
Yt

}
. Then, 𝜼TsNt∕N is trivially a uniformly integrable L1-mixingale. An application of Andrews (1988, thm. 2)

provides the result. □

Proof of (3). From 𝜽 ∈ (𝜽0), we have 𝛽0,∗ ≤ 𝛽0 ≤ 𝛽∗0 , where 𝛽0,∗, 𝛽
∗
0 are suitable positive constants. Consider

the third derivative

𝜕3li,t(𝜽)
𝜕𝜽j𝜕𝜽l𝜕𝜽k

= 2
Yi,t

𝜆3
i,t(𝜽)

(
𝜕𝜆i,t(𝜽)
𝜕𝜽j

𝜕𝜆i,t(𝜽)
𝜕𝜽l

𝜕𝜆i,t(𝜽)
𝜕𝜽k

)
≤ 2

𝛽−1
0,∗Yi,t

𝜆2
i,t(𝜽)

(
𝜕𝜆i,t(𝜽)
𝜕𝜽j∗

𝜕𝜆i,t(𝜽)
𝜕𝜽l∗

𝜕𝜆i,t(𝜽)
𝜕𝜽k∗

)
∶= mi,t.

Take the maximum of the third derivatives among {i, l, k} to be, for example, at 𝜽j∗ = 𝜽l∗ = 𝜽k∗ = 𝛽1, the proof is
analogous for the other derivatives,

1
N

N∑

i=1

𝜕3li,t(𝜽)
𝜕𝛽3

1

= 1
N

N∑

i=1

2
Yi,t

𝜆3
i,t(𝜽)

(
wT

i Yt−1

)3
≤

1
N

N∑

i=1

2
𝛽−1

0,∗Yi,t

𝜆2
i,t(𝜽)

(
wT

i Yt−1

)3 ∶= 1
N

N∑

i=1

mi,t.

Now, define MNTN
∶= (NTN)−1∑TN

t=1

∑N
i=1mi,t and N−1∑N

i=1E(mi,t) < ∞ since all the moment of Yt exist. It is easy

to see that MNTN

p
−→ M as

{
N,TN

}
→ ∞, similarly to the steps of A.2.1 above, with M = limN→∞ N−1∑N

i=1E(mi,t).
Then point (3) of Lemma 1 follows by the last limit of B3. We omit the details. □

A.3. Proof of Lemma 2
Analogously to A.2, we address separately each point of Lemma 2.

Proof of (1). Let g̃Nt(Wt) = N−1𝜼T 𝜕𝝀T
t

𝜕𝜽
D−1

t 𝚺tD
−1
t

𝜕𝝀t

𝜕𝜽T 𝜼 =
∑m

r=1

∑m
l=1𝜂r𝜂lbrl,t where N−1BNt = (brl,t)1≤r,l≤m and 𝚺t =

E(𝝃t𝝃
T
t |

N
t−1), with 𝝃t = Yt−𝝀t = Ŷ

t

t−J−�̂�
t

t−J , since E
(

Ŷ
t

t−J|
N
t−1

)
= �̂�

t

t−J . We consider again the most complicated

element, that is b22,t. For 1 ≤ i, j ≤ N, define 𝜎ijt = E
(
𝜉i,t𝜉j,t|

N
t−1

)
and 𝜌ijt = E

(
𝜉i,t𝜉j,t|

N
t−1

)
∕
(√

𝜆i,t

√
𝜆j,t

)
, which

are the elementwise conditional covariances and correlations respectively. Then

|||b22,t − bt
22,t−J

||| =
|||||||

1
N

N∑

i=1

N∑

j=1

(
wT

i Yt−1

) (
wT

j Yt−1

)
𝜎ijt

𝜆i,t𝜆j,t

− 1
N

N∑

i=1

N∑

j=1

(
wT

i Ŷ
t−1

t−J

)(
wT

j Ŷ
t−1

t−J

)
𝜎ijt

�̂�i,t�̂�j,t

|||||||

≤ 𝛽−3
0

1
N

N∑

i=1

N∑

j=1

|||𝜎ijt
|||

𝜆
1∕2
i,t 𝜆

1∕2
j,t

||||

(
wT

i Yt−1

) (
wT

j Yt−1

)
�̂�i,t�̂�j,t −

(
wT

i Ŷ
t−1

t−J

)(
wT

j Ŷ
t−1

t−J

)
𝜆i,t𝜆j,t

||||

≤ 𝛽−3
0

1
N

N∑

i,j=1

|||𝜌ijt
|||

(

r1,i,j,t
|||𝜆i,t − �̂�i,t

||| + r2,i,j,t

||||||

N∑

j=1

wij(Yj,t−1 − Ŷj,t−1)
||||||

)

.

The second inequality is obtained employing the arguments used for the element h22,t of the Hessian as in A.2.
Moreover, r1,i,j,t = (wT

i Yt−1)(wT
j Yt−1)(�̂�j,t + 𝜆j,t) and r2,i,j,t = 𝜆i,t𝜆j,t(wT

i Yt−1 + wT
i Yt−1

t−J). Set 1∕q + 1∕h = 1∕b. Note

that supi,j≥1
‖‖‖r1,i,j,t

‖‖‖q
< r1 < ∞, supi,j≥1

‖‖‖r2,i,j,t
‖‖‖q

< r2 < ∞ by the same argument of supi≥1
‖‖l1,i,t

‖‖a
< l1 above.

When i = j, 𝜎iit = 𝜆i,t, consequently, N−1∑N
i,j=1

‖‖‖𝜌ijt
‖‖‖a
= N−1∑N

i=1 ‖1‖a = 1. Instead, when i ≠ j,

max
1≤i≤N

N∑

j=1

|||𝜌ijt
||| = max

1≤i≤N

i−1∑

j=1

|||𝜌ijt
||| + max

1≤i≤N

N∑

j=i+1

|||𝜌ijt
||| ≤ max

1≤i≤N

i−1∑

j=1

𝜑i−j + max
1≤i≤N

N∑

j=i+1

𝜑j−i ≤ 2
N−1∑

h=1

𝜑h
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612 M. ARMILLOTTA AND K. FOKIANOS

which is bounded by 2Φ and the first inequality is a consequence of B4. Then, ∀i, j = 1, … ,N, we have
N−1∑N

i,j=1
‖‖‖𝜌ijt

‖‖‖a
≤ 𝜆, where 𝜆 = max {1, 2Φ}. This entails that

‖‖‖b22,t − bt
22,t−J

‖‖‖2
≤ 𝛽−3

0
1
N

N∑

i,j=1

‖‖‖𝜌ijt
‖‖‖a

‖‖‖‖‖‖
r1,i,j,t

|||𝜆i,t − �̂�i,t
||| + r2,i,j,t

||||||

N∑

j=1

wij(Yj,t−1 − Ŷj,t−1)
||||||

‖‖‖‖‖‖b

≤ 𝛽−3
0 𝜆 max

1≤i,j≤N

‖‖‖r1,i,j,t
‖‖‖q

‖‖‖Yi,t − Ŷi,t
‖‖‖h
+ 𝛽−4

0 𝜆 max
1≤i,j≤N

‖‖‖r2,i,j,t
‖‖‖q

‖‖‖Yi,t−1 − Ŷi,t−1
‖‖‖h

≤
𝛽−3

0 𝜆
(
r1 + r2

)
2C1∕h

h

1 − d
dJ−1 ∶= r22𝜈J .

Here again 𝜈J = dJ−1. Then, the triangular array
{

X̃Nt = g̃Nt(Wt) − E
[
g̃Nt(Wt)

]}
is Lp-NED, with EX̃

2

Nt < ∞, and
theorem 2 in Andrews (1988) holds for it. This result and B1 yield to the convergence

(NTN)−1
𝜼

TBNTN
𝜼

p
−→ 𝜼

TB𝜼, (A-3)

as
{

N,TN

}
→ ∞, for any non-null 𝜼 ∈ Rm. The existence of the limiting information matrix (22) follows the

same methodology used in A.2.1 for the existence of (20), by considering B3′ instead of B3. The same notation
BN = (Bk,l)k,l=1,… ,m and the same splits for each elements of the information matrix are adopted. So we high-
light only the element which is different, i.e. N−1B12b = N−1E(1T

ND−1
t 𝚺tD

−1
t WYt−1) = N−1B12a + N−1B12b.

Clearly, N−1B12a = 𝜇1T
N𝚲1N → 𝜇f1. Moreover, when i = j, ||N

−1B12b
|| =

||||
N−1E

[∑N
i,j=1𝜎ijt(wT

i Ỹt−1)∕(𝜆i,t𝜆j,t)
]||||
=

||N
−1H12b

|| → 0, as N → ∞. When i ≠ j

||||

B12b

N

||||
≤

𝛽−1
0

N
E

(

max
1≤i≤N

N∑

j=1

|||𝜌ijt
|||

N∑

i=1

wT
i
||Ỹt−1

||v

)

≤
2Φ𝛽−1

0

N
E
(
1T

NW ||Ỹt−1
||v
)
,

which converges to 0, as N → ∞, following (A-2). □

Proof of (2). Now we show asymptotic normality. Define 𝜀Nt = 𝜼T 𝜕𝝀t

𝜕𝜽

T
D−1

t 𝝃t, and recall the 𝜎-field

N
t = 𝜎

(
𝜉i,s ∶ 1 ≤ i ≤ N, s ≤ t

)
. Set SNt =

∑t
s=1𝜀Ns, so

{
SNt,

N
t ∶ t ≤ TN ,N ≥ 1

}
is a martingale array. By

N−2E(𝜼TsNt)4 <∞, the Lindberg’s condition is satisfied

1
NTN

TN∑

t=1

E
[
𝜀2

NtI
(
||𝜀Nt

|| >
√

NTN𝛿

)
| N

t−1

]
≤

𝛿−2

N2T2
N

TN∑

t=1

E
(
𝜀4

Nt | 
N
t−1

) p
−→ 0,

for any 𝛿 > 0, as N → ∞. By the result in equation (A-3)

1
NTN

TN∑

t=1

E
(
𝜀2

Nt | 
N
t−1

)
= 1

NTN

TN∑

t=1

𝜼
T 𝜕𝝀t

𝜕𝜽

T

D−1
t E(𝝃t𝝃

T
t | 

N
t−1)D

−1
t

𝜕𝝀t

𝜕𝜽
T
𝜼

p
−→ 𝜼

TB𝜼,

for any 𝛿 > 0, as N → ∞. Then, the central limit theorem for martingale array in Hall and Heyde (1980, cor.

3.1) applies, (NTN)−1∕2SNTN

d
−→ N(0, 𝜼TB𝜼), and an application of the Cramér-Wold theorem leads to the desired

result. □
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