Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). A priori predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.
Chirianni, F., Vairo, G., Marino, M. (2024). Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in silico design tool. MECCANICA, 59(8), 1285-1299 [10.1007/s11012-024-01862-7].
Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in silico design tool
Chirianni F.
;Vairo G.;Marino M.
2024-01-01
Abstract
Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). A priori predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.File | Dimensione | Formato | |
---|---|---|---|
2024-Chirianni_Influence of extruder geometry and bio‐ink type in extrusion‐based bioprinting via an in silico design tool.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.