In this paper, we introduce a volume- or area-preserving curvature flow for hypersurfaces with capillary boundary in the half-space, with speed given by a positive power of the mean curvature with a non-local averaging term. We demonstrate that for any convex initial hyper- surface with a capillary boundary, the flow exists for all time and smoothly converges to a spherical cap as t → +∞.

Sinestrari, C., Weng, L. (2024). Hypersurfaces with capillary boundary evolving by volume preserving power mean curvature flow. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63(9) [10.1007/s00526-024-02838-x].

Hypersurfaces with capillary boundary evolving by volume preserving power mean curvature flow

Carlo Sinestrari
;
Liangjun Weng
2024-01-01

Abstract

In this paper, we introduce a volume- or area-preserving curvature flow for hypersurfaces with capillary boundary in the half-space, with speed given by a positive power of the mean curvature with a non-local averaging term. We demonstrate that for any convex initial hyper- surface with a capillary boundary, the flow exists for all time and smoothly converges to a spherical cap as t → +∞.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MAT/03
Settore MATH-03/A - Analisi matematica
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Sinestrari, C., Weng, L. (2024). Hypersurfaces with capillary boundary evolving by volume preserving power mean curvature flow. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63(9) [10.1007/s00526-024-02838-x].
Sinestrari, C; Weng, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/392672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact