The human immunodeficiency virus (HIV) causes an infectious disease with a high viral tropism toward CD4 T-lymphocytes and macrophage. Since the advent of combined antiretroviral therapy (CART), the number of opportunistic infectious disease has diminished, turning HIV into a chronic condition. Nevertheless, HIV-infected patients suffer from several life-long symptoms, including the HIV-associated neurocognitive disorder (HAND), whose biological substrates remain unclear. HAND includes a range of cognitive impairments which have a huge impact on daily patient life. The aim of this study was to examine putative structural brain network changes in HIV-infected patient to test whether diffusion-imaging-related biomarkers could be used to discover and characterize subtle neurological alterations in HIV infection. To this end, we employed multi-shell, multi-tissue constrained spherical deconvolution in conjunction with probabilistic tractography and graph-theoretical analyses. We found several statistically significant effects in both local (right postcentral gyrus, right precuneus, right inferior parietal lobule, right transverse temporal gyrus, right inferior temporal gyrus, right putamen and right pallidum) and global graph-theoretical measures (global clustering coefficient, global efficiency and transitivity). Our study highlights a global and local reorganization of the structural connectome which support the possible application of graph theory to detect subtle alteration of brain regions in HIV patients.
Di Cio, F., Minosse, S., Picchi, E., Di Giuliano, F., Sarmati, L., Teti, E., et al. (2021). Whole-brain white matter network reorganization in HIV. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, Mexico [10.1109/EMBC46164.2021.9629503].
Whole-brain white matter network reorganization in HIV
Minosse, S.;Picchi, E.;Di Giuliano, F.;Sarmati, L.;Teti, E.;Andreoni, M.;Floris, R.;Guerrisi, M.;Garaci, F.;Toschi, N.
2021-01-01
Abstract
The human immunodeficiency virus (HIV) causes an infectious disease with a high viral tropism toward CD4 T-lymphocytes and macrophage. Since the advent of combined antiretroviral therapy (CART), the number of opportunistic infectious disease has diminished, turning HIV into a chronic condition. Nevertheless, HIV-infected patients suffer from several life-long symptoms, including the HIV-associated neurocognitive disorder (HAND), whose biological substrates remain unclear. HAND includes a range of cognitive impairments which have a huge impact on daily patient life. The aim of this study was to examine putative structural brain network changes in HIV-infected patient to test whether diffusion-imaging-related biomarkers could be used to discover and characterize subtle neurological alterations in HIV infection. To this end, we employed multi-shell, multi-tissue constrained spherical deconvolution in conjunction with probabilistic tractography and graph-theoretical analyses. We found several statistically significant effects in both local (right postcentral gyrus, right precuneus, right inferior parietal lobule, right transverse temporal gyrus, right inferior temporal gyrus, right putamen and right pallidum) and global graph-theoretical measures (global clustering coefficient, global efficiency and transitivity). Our study highlights a global and local reorganization of the structural connectome which support the possible application of graph theory to detect subtle alteration of brain regions in HIV patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.