In a separable Hilbert space X, we study the controlled evolution equationu'(t) + Au(t) + p(t)Bu(t) = 0,where A >= -sigma I (sigma >= 0) is a self-adjoint linear operator, B is a bounded linear operator on X, and p is an element of L-loc(2) (0, +infinity) is a bilinear control. We give sufficient conditions in order for the above nonlinear control system to be locally controllable to the jth eigensolution for any j >= 1. We also derive semi-global controllability results in large time and discuss applications to parabolic equations in low space dimension. Our method is constructive and all the constants involved in the main results can be explicitly computed.

Alabau-Boussouira, F., Cannarsa, P., Urbani, C. (2022). Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 29(4) [10.1007/s00030-022-00770-7].

Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control

Cannarsa P.;Urbani C.
2022-01-01

Abstract

In a separable Hilbert space X, we study the controlled evolution equationu'(t) + Au(t) + p(t)Bu(t) = 0,where A >= -sigma I (sigma >= 0) is a self-adjoint linear operator, B is a bounded linear operator on X, and p is an element of L-loc(2) (0, +infinity) is a bilinear control. We give sufficient conditions in order for the above nonlinear control system to be locally controllable to the jth eigensolution for any j >= 1. We also derive semi-global controllability results in large time and discuss applications to parabolic equations in low space dimension. Our method is constructive and all the constants involved in the main results can be explicitly computed.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Bilinear control
Evolution equations
Exact controllability
Parabolic PDEs
Control cost
Alabau-Boussouira, F., Cannarsa, P., Urbani, C. (2022). Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 29(4) [10.1007/s00030-022-00770-7].
Alabau-Boussouira, F; Cannarsa, P; Urbani, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FAB-PMC-Urb_NDEA.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 673.1 kB
Formato Adobe PDF
673.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/389743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact