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Abstract. In a separable Hilbert space X, we study the controlled evolu-
tion equation

u′(t) + Au(t) + p(t)Bu(t) = 0,

where A ≥ −σI (σ ≥ 0) is a self-adjoint linear operator, B is a bounded
linear operator on X, and p ∈ L2

loc(0, +∞) is a bilinear control. We
give sufficient conditions in order for the above nonlinear control system
to be locally controllable to the jth eigensolution for any j ≥ 1. We
also derive semi-global controllability results in large time and discuss
applications to parabolic equations in low space dimension. Our method
is constructive and all the constants involved in the main results can be
explicitly computed.
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1. Introduction

In a separable Hilbert space X consider the nonlinear control system{
u′(t) + Au(t) + p(t)Bu(t) = 0, t > 0
u(0) = u0.

(1.1)
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where A : D(A) ⊂ X → X is a linear self-adjoint operator on X such that
A ≥ −σI, with σ ≥ 0, B belongs to L(X), the space of all bounded linear
operators on X, and p(t) is a scalar function representing a bilinear control. We
suppose that the spectrum of A consists of a sequence of real numbers {λk}k∈N∗

which can be ordered, whithout loss of generality, as −σ ≤ λk ≤ λk+1 → ∞
as k → ∞. We denote by {ϕk}k∈N∗ the corresponding eigenfunctions, Aϕk =
λkϕk, with ‖ϕk‖ = 1, ∀ k ∈ N

∗.
In the recent paper [1], we studied the stabilizability of (1.1) to the jth

eigensolution of the free equation (p ≡ 0), ψj(t) = e−λjtϕj , for every j ∈ N
∗.

For this purpose, we introduced the notion of j-null controllability in time
T > 0 for the pair {A,B}: denoting by y(·; y0, p) the solution of the linear
system ⎧⎨

⎩
y′(t) + Ay(t) + p(t)Bϕj = 0, t ∈ [0, T ]

y(0) = y0,

we say that {A,B} is j-null controllable in time T > 0 if for any initial
condition y0 ∈ X there exists a control p ∈ L2(0, T ) such that

y(T ; y0, p) = 0 and ‖p‖L2(0,T ) ≤ NT ‖y0‖ ,

where NT is a positive constant depending only on T . Then, the control cost
is given by

N(T ) = sup
‖y0‖=1

inf
{

‖p‖L2(0,T ) : y(T ; y0, p) = 0
}

.

In [1, Theorem 3.7] we have shown that, if {A,B} is j-null controllable,
then (1.1) is locally superexponentially stabilizable to ψj : for all u0 in some
neighborhood of ϕj there exists a control p ∈ L2

loc([0,+∞)) such that the
corresponding solution u of (1.1) satisfies

‖u(t) − ψj(t)‖ ≤ Me−eωt

, ∀ t ≥ 0 (1.2)

for suitable constants ω,M > 0 independent of u0. Notice that such a result
holds only under the condition of j-null controllability for the pair {A,B}. In
particular, no assumptions are required on the behavior of the control cost.

Moreover, in [1, Theorem 3.8] we gave sufficient conditions to ensure the
j-null controllability of {A,B}: a gap condition for the eigenvalues of A and a
rank condition on B.

In this paper, we address the related, more delicate, issue of the exact
controllability of (1.1) to the eigensolutions ψj via bilinear controls. The main
differences between the results of this paper and [1, Theorem 3.7] can be sum-
marized as follows:

• in addition to assuming the pair {A,B} to be j-null controllable, we
further require that the control cost N(·) satisfies N(τ) ≤ eν/τ for any
0 < τ ≤ T0, with ν, T0 > 0,

• under the above stronger assumptions, not only we prove local exact
controllability in any time, but also global exact controllablity in large
time for a wide set of initial data.
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The following result ensures local exact controllability for problem (1.1)
assuming a precise behavior of the control cost for small time. In the last
section of this paper, we show that such a behavior of the control cost is
typical of parabolic problems in one space dimension.

Theorem 1.1. Let A : D(A) ⊂ X → X be a densely defined linear operator
such that

(a) A is self-adjoint,
(b) ∃σ ≥ 0 : 〈Ax, x〉 ≥ −σ ‖x‖2

, ∀x ∈ D(A),
(c) ∃λ > −σ such that (λI + A)−1 : X → X is compact,

(1.3)

and let B : X → X be a bounded linear operator. Assume that {A,B} is j-null
controllable in any time T > 0 for some j ∈ N

∗ and suppose that

N(τ) ≤ eν/τ , ∀ 0 < τ ≤ T0, (1.4)

for some constants ν = ν(j), T0 > 0.
Then, for any T > 0, there exists a constant RT > 0 such that, for any

u0 ∈ BRT
(ϕj), there exists a control p ∈ L2(0, T ) such that the solution u of

(1.1) satisfies u(T ) = ψj(T ). Moreover, the following estimate holds

‖p‖L2(0,T ) ≤ e−π2Γ0/T

e2π2Γ0/(3T ) − 1
, (1.5)

where Γ0 and RT can be computed as follows

Γ0 := 2ν + max {ln(D), 0} , (1.6)

RT := e−6Γ0/T1 , (1.7)

with

T1 := min
{

6
π2

T, 1, T0

}
, (1.8)

D := 2 ‖B‖ e2σ+(3‖B‖)/2+1/2 max {1, ‖B‖} . (1.9)

The main idea of the proof consists in applying the stability estimates
of [1] on a suitable sequence of time intervals of decreasing length Tj , such
that

∑∞
j=1 Tj < ∞. Such a sequence, which can be constructed only thanks

to (1.4), has to be carefully chosen in order to fit the error estimates that we
take from [1]. We point out that our method is fully constructive, being based
on an algorithm that allows to compute all relevant constants. In particular,
we make no use of inverse mapping theorems. Indeed, our strategy relies on
the resolution of a moment problem to define a suitable control which steers
the solution of our problem to the desired eigensolution. To this purpose, we
use an estimate of the biorthogonal family to the family of exponentials that
has been established in [15].

In [1], we gave sufficient conditions for j-null controllability. However, the
hypotheses of [1, Theorem 3.8] do not guarantee the validity of condition (1.4)
for the control cost. In the result that follows, we provide sufficient conditions
for N(T ) to satisfy (1.4). It would be interesting to understand if (1.4) is also
necessary for the local exact controllability of (1.1).
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Theorem 1.2. Let A : D(A) ⊂ X → X be such that (1.3) holds and suppose
that there exists a constant α > 0 for which the eigenvalues of A fulfill the gap
condition √

λk+1 − λ1 −
√

λk − λ1 ≥ α, ∀ k ∈ N
∗. (1.10)

Let j ∈ N
∗ be fixed and let B : X → X be a bounded linear operator such that

there exist b, q > 0 for which

〈Bϕj , ϕj〉 �= 0 and |λk − λj |q |〈Bϕj , ϕk〉| ≥ b, ∀ k �= j. (1.11)

Then, the pair {A,B} is j-null controllable in any time T > 0, and the control
cost N(T ) satisfies (1.4) with

T0 := min
{
1, 1/α2

}
, (1.12)

and ν = νj = νj(M, b, q, α), where

2νj = M +
M2

4
+ (2q + 3)e + max

{
ln
(

3M

|〈Bϕj , ϕj〉|2
)

,

ln
(

3MCq

b2

)
, ln

(
3MCq,α

b2

)
, 0
}

(1.13)

and

M := C

(
1 +

1
α2

)
+ 2|λ1|, (1.14)

Cq = 2
(

2q

e

)2q

, Cq,α =
2Γ(2q + 1)
α
√

λ2 − λ1

. (1.15)

Here Γ(·) is the Gamma function and C is a positive constant independent of
T and α.

Observe that assumption (1.11) is stronger than [1, hypothesis (16)]. Nev-
ertheless, it is satisfied by all the examples of parabolic problems that we
presented in [1].

From Theorems 1.1 and 1.2 we deduce the following Corollary.

Corollary 1.3. Let A : D(A) ⊂ X → X be such that (1.3) holds and suppose
that there exists a constant α > 0 for which (1.10) is satisfied. Let B : X → X
be a bounded linear operator that verifies (1.11) for some b, q > 0. Then,
problem (1.1) is locally controllable to the jth eigensolution ψj in any time
T > 0.

Furthermore, from Theorem 1.1 we deduce two semi-global controllability
results in the case of an accretive operator A. In the first one, Theorem 1.4
below, we prove that all initial states lying in a suitable strip can be steered in
finite time to the first eigensolution ψ1 (see Fig. 1). Moreover, we give a uniform
estimate for the controllability time depending on the size of the projection of
the initial datum u0 on ϕ⊥

1 .
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ϕ1ψ1(TR)

R

−R
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u0

Figure 1. The colored region represents the set of initial
conditions that can be steered to the first eigensolution in
time TR (Color figure online)

Theorem 1.4. Let A : D(A) ⊂ X → X be a densely defined linear operator
such that (1.3) holds with σ = 0 and let B : X → X be a bounded linear
operator. Let {A,B} be a 1-null controllable pair which satisfies (1.4). Then,
there exists a constant r1 > 0 such that for any R > 0 there exists TR > 0
such that for all u0 ∈ X with

|〈u0, ϕ1〉 − 1| < r1, ‖u0 − 〈u0, ϕ1〉ϕ1‖ ≤ R, (1.16)

problem (1.1) is exactly controllable to the first eigensolution ψ1(t) = e−λ1tϕ1

in time TR.

Our second semi-global result, Theorem 1.5 below, ensures the exact con-
trollability of all initial states u0 ∈ X \ϕ⊥

1 to the evolution of their orthogonal
projection along the first eigensolution. Such a function is defined by

φ1(t) = 〈u0, ϕ1〉ψ1(t), ∀ t ≥ 0, (1.17)

where ψ1 is the first eigensolution. Notice that if 〈u0, ϕ1〉 > 0 and λ1 > 0,
φ1(·) can been interpreted as a time-shift of ψ1:

φ1(t) = ψ(t − t1) = e−λ1(t−t1)ϕ1

with t1 := 1
λ1

log〈u0, ϕ1〉.
Theorem 1.5. Let A : D(A) ⊂ X → X be a densely defined linear operator
such that (1.3) holds with σ = 0 and let B : X → X be a bounded linear
operator. Let {A,B} be a 1-null controllable pair which satisfies (1.4). Then,
for any R > 0 there exists TR > 0 such that for all u0 ∈ X with

‖u0 − 〈u0, ϕ1〉ϕ1‖ ≤ R|〈u0, ϕ1〉|, (1.18)

system (1.1) is exactly controllable to φ1, defined in (1.17), in time TR.
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Figure 2. Fixed any R > 0, the set of initial conditions
exactly controllable in time TR to their projection along the
first eigensolution is indicated by the colored cone QR (Color
figure online)

Notice that, denoting by θ the angle between the half-lines R+ϕ1 and
R+u0, condition (1.18) is equivalent to

| tan θ| ≤ R,

which defines a closed cone, say QR, with vertex at 0 and axis equal to Rϕ1 (see
Fig. 2). Therefore, Theorem 1.5 ensures a uniform controllability time for all
initial conditions lying in QR. We observe that, since R is any arbitrary positive
constant, all initial conditions u0 ∈ X \ϕ⊥

1 can be steered to the corresponding
projection to the first eigensolution. Indeed, for any u0 ∈ X \ ϕ⊥

1 , we define

R0 :=
∥∥∥∥ u0

〈u0, ϕ1〉 − ϕ1

∥∥∥∥ .

Then, for any R ≥ R0 condition (1.18) is fulfilled:
1

|〈u0, ϕ1〉| ‖u0 − 〈u0, ϕ1〉ϕ1‖ = R0 ≤ R.

The proof of Theorems 1.4 and 1.5 uses the strict accretivity of A in every
direction ϕj with j > 1. By letting the equation evolve freely under the action
of the semigroup generated by −A, the trajectory enters a neighbourhood of
the 1-st eigenstate so that we can apply our local controllability result stated
in Theorem 1.1.

Our approach allows for some extensions which cover more general control
systems. For instance, operator B can be assumed to be unbounded provided



NoDEA Exact controllability to eigensolutions Page 7 of 32 38

that D(A1/2) ↪→ D(B) and ||Bϕ|| ≤ C
(||A1/2ϕ|| + ||ϕ||), thus including the

important example of the one dimensional Fokker-Planck equation. Moreover,
we can also treat more general control costs satisfying

N(τ) ≤ eν/τα

, 0 < τ ≤ T0

for some α > 0, instead of (1.4). However, both extensions require a sub-
stantial amount of additional work. This is why we prefer to keep them for a
forthcoming paper.

Finally, we would like to recall part of the huge literature on bilinear
control of evolution equations, referring the reader to the references in [1] for
more details. A seminal paper in this field is certainly the one by Ball et al.
[3], which establishes that system (1.1) is not controllable along any reference
trajectory. More precisely, denoting by u(t;u0, p) the unique solution of (1.1),
the attainable set from u0 defined by

S(u0) = {u(t;u0, p); t ≥ 0, p ∈ Lr
loc([0,+∞),R), r > 1}

is shown in [3] to have a dense complement, and so it cannot be a neigh-
bourhood of the reference trajectory. Notice that, since we control our bilinear
problem exactly to the reference trajectory, the negative result of [3] does not
represent an obstacle for this kind of controllability.

As for positive results, we would like to mention Beauchard [5], on bilinear
control of the wave equation, and Beauchard and Laurent [7] on bilinear control
of the Schrödinger equation (see also [4] for a first result on this topic). The
results obtained in these papers rely on linearization around the ground state,
the use of the inverse mapping theorem, and a regularizing effect which takes
place in both problems. The latter property allows the authors to work in
spaces where the operator B turns out to be unbounded. Local controllability is
proved for any positive time for the Schrödinger equation and for a sufficiently
(optimal) large time for the wave equation. Both papers require the condition

〈Bϕ1, ϕk〉 �= 0, ∀ k ≥ 1 (1.19)

to be satisfied, together with a suitable asymptotic behavior with respect to
the eigenvalues. Notice that the structure of the second order operator and the
fact that the space dimension equals one allow the authors of [5,7] to apply
Ingham’s theory [19] which requires a gap condition on the eigenvalues. We fur-
ther observe that even if the genericity of assumption (1.19) is proved in both
papers [5,7], only few explicit examples of operators B of multiplication type
are available in the literature. We refer to [2] where both a general construc-
tive original method and an original algorithm for building potentials which
satisfy the infinite non-vanishing conditions (1.19), and further the asymptotic
condition (1.11), are established, for the first time to our knowledge.

If (1.19) is violated then it has been first shown by Coron [17], for a model
describing a particle in a moving box, that there exists a minimal time for local
exact controllability to hold. This model couples the Schrödinger equation with
two ordinary differential equations modeling the speed and acceleration of the
box (see also Beauchard and Coron [6] for local exact controllability for large
time). A further paper by Beauchard and Morancey [9] for the Schrödinger
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equation extends [7] to cases for which the above condition is violated, that is,
when there exist integers k such that 〈Bϕ1, ϕk〉 = 0.

An example of controllability to trajectories for nonlinear parabolic sys-
tems is studied in [18], where, however, additive controls are considered. In
such an example, one can obtain controllability to free trajectories by Carle-
man estimates and inverse mapping arguments. Such a strategy seems hard to
adapt to the current setting.

The paper which has the strongest connection with our work is the one
by Beauchard and Marbach in [8], where the authors study small-time null
controllability for a scalar-input heat equation in one space dimension, with
nonlinear lower order terms. Among the results of such paper, we mention null-
controllability to the first eigenstate of a heat equation with bilinear control.
From this result it would be possible to deduce local controllability only to the
first eigenstate of the heat equation subject to Neumann boundary conditions.
It is worth noting that [8] addresses a specific parabolic equation. Moreover,
the methods developed therein, relying on the so-called source term procedure,
are totally different from ours.

We observe that the bilinear controls we use in this paper are just scalar
functions of time. This fact explains why applications mainly concern problems
in low space dimension, like the results in [4–9,17]. A stronger control action
could be obtained by letting controls depend on time and space. We refer the
reader to [12,13] for more on this subject.

This paper is organized as follows. In Sect. 2, we have collected some
preliminaries as well as results from [1] that we need in order to prove Theorem
1.1. Section 3 contains such a proof, while Sect. 4 is devoted to demonstrate
Theorem 1.2. In Sect. 5, we give the proof of our semi-global results (Theorems
1.4 and 1.5). Finally, applications of Theorem 1.1 to parabolic problems are
analyzed is Sect. 6.

2. Preliminaries

In this section, we recall a well-known result for the well-posedness of our
control problem and the regularity of the solution as well as some results from
[1] that are necessary for the proof of Theorem 1.1. Moreover, we will remind
the fundamental definition of j-null controllable pair.

We recall our general functional frame. Let (X, 〈·, ·〉, ‖·‖) be a separable
Hilbert space, let A : D(A) ⊂ X → X be a densely defined linear operator
with the following properties

(a) A is self-adjoint,
(b) ∃σ ≥ 0 : 〈Ax, x〉 ≥ −σ ‖x‖2

, ∀x ∈ D(A),
(c) ∃λ > −σ such that (λI + A)−1 : X → X is compact.

(2.1)

We denote by {λk}k∈N∗ the eigenvalues of A, which can be ordered, whithout
loss of generality, as −σ ≤ λk ≤ λk+1 → ∞ as k → ∞, and by {ϕk}k∈N∗ the
corresponding eigenfunctions, Aϕk = λkϕk, with ‖ϕk‖ = 1, ∀ k ∈ N

∗.
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Let B : X → X be a bounded linear operator. Fixed T > 0, consider the
following bilinear control problem⎧⎨

⎩
u′(t) + Au(t) + p(t)Bu(t) + f(t) = 0, t ∈ [0, T ]

u(0) = u0.
(2.2)

If u0 ∈ X, p ∈ L2(0, T ) and f ∈ L2(0, T ;X), a function u ∈ C0([0, T ],X) is
called a mild solution of (2.2) if it satisfies

u(t) = e−tAu0 −
∫ t

0

e−(t−s)A[p(s)Bu(s) + f(s)]ds, ∀t ∈ [0, T ].

We introduce the following notation:

‖f‖2 := ‖f‖L2(0,T ;X) , ∀ f ∈ L2(0, T ;X)

‖f‖∞ := ‖f‖C([0,T ];X) = supt∈[0,T ] ‖f(t)‖ , ∀ f ∈ C([0, T ];X).

The well-posedness of (2.2) is ensured by the following proposition (see [3] for
a proof).

Proposition 2.1. Let T > 0. For any u0 ∈ X, p ∈ L2(0, T ) and f ∈ L2(0, T ;X)
there exists a unique mild solution of (2.2).

Furthermore, u(·) satisfies

‖u‖∞ ≤ C(T )(‖u0‖ + ‖f‖2), (2.3)

for a suitable positive constant C(T ).

Remark 2.2. Under the hypotheses of Proposition 2.1 it is possible to prove
that the solution is more regular. Indeed, for every ε ∈ (0, T ) it holds that
u ∈ H1(ε, T ;X) ∩ L2(ε, T ;D(A)) and the following identity is satisfied

u′(t) + Au(t) + p(t)Bu(t) + f(t) = 0, for a.e. t ∈ [ε, T ].

Furthermore, if u0 = 0 then u ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) (it can be
deduced by applying, for instance, [10, Proposition 3.1, p. 130]).

Let us now consider the following nonlinear control problem⎧⎨
⎩

v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕj = 0, t ∈ [0, T ]

v(0) = v0,
(2.4)

where ϕj is the jth eigenfunction of A. We denote by v(·; v0, p) the solution of
(2.4) associated with initial condition v0 and control p.

The following result establishes a bound for the solution of (2.4) in terms
of the initial condition. We give its proof in “Appendix A” for the sake of
clarity and completeness. This proof follows that of [1, Proposition 4.3], with
a different presentation, in particular with respect to the assumptions in the
statement.
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Proposition 2.3. Let T > 0. Let A : D(A) ⊂ X → X be a densely defined
linear operator that satisfies (2.1) and let B : X → X be a bounded linear
operator. Let v0 ∈ X and let p ∈ L2(0, T ) be such that

‖p‖L2(0,T ) ≤ NT ‖v0‖ , (2.5)

with NT a positive constant.
Then, v(·; v0, p) verifies

sup
t∈[0,T ]

‖v(t; v0, p)‖2 ≤ C1(T, ‖v0‖) ‖v0‖2
, (2.6)

where C1(T, ‖v0‖) := e(2σ+‖B‖)T+2‖B‖NT

√
T‖v0‖(1 + ‖B‖N2

T ) and σ is defined
in (2.1).

For any 0 ≤ s0 ≤ s1, we now introduce the linear problem⎧⎪⎨
⎪⎩

y′(t) + Ay(t) + p(t)Bϕj = 0, t ∈ [s0, s1]

y(s0) = y0

(2.7)

and we denote by y(·; y0, s0, p) the solution associated with initial condition
y0 at time s0 and control p. Let us recall that for any fixed T > 0 and j ∈ N

∗,
we say that the pair {A,B} is j-null controllable in time T if there exists a
constant NT such that for every y0 ∈ X there exists a control p ∈ L2(0, T )
with

‖p‖L2(0,T ) ≤ NT ‖y0‖ , (2.8)

for which the solution of (2.7) with s0 = 0 and s1 = T satisfies y(T ; y0, 0, p) =
0. In this case, we define the control cost as

N(T ) = sup
‖y0‖=1

inf
{

‖p‖L2(0,T ) : y(T ; y0, 0, p) = 0
}

. (2.9)

With an approximation argument one realizes that (2.8) holds with NT =
N(T ), that is, for every y0 ∈ X there exists p ∈ L2(0, T ) with ‖p‖L2(0,T ) ≤
N(T ) ‖y0‖ such that y(T ; y0, 0, p) = 0.

Now, consider the following control problem⎧⎨
⎩

w′(t) + Aw(t) + p(t)Bv(t) = 0, t ∈ [0, T ]

w(0) = 0,
(2.10)

with v the solution of (2.4). We denote by w(·; 0, p) the solution of (2.10)
associated with control p.

In the following proposition we give a quadratic estimate of the solution
of (2.10) in terms of the initial condition of the Cauchy problem solved by v.
We give its proof in “Appendix A” for the sake of clarity and completeness.
This proof follows that of [1, Proposition 4.4], with a different presentation
and a different hypothesis (2.11) compared to the corresponding ones in the
statement of [1, Proposition 4.4].
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Proposition 2.4. Let T > 0, A : D(A) ⊂ X → X be a densely defined linear
operator that satisfies (2.1) and B : X → X be a bounded linear operator. Let
p ∈ L2(0, T ) verify (2.5) with NT = N(T ) and v0 ∈ X be such that

N(T ) ‖v0‖ ≤ 1. (2.11)

Then, w(·; 0, p) satisfies

‖w(T ; 0, p)‖ ≤ K(T ) ‖v0‖2
, (2.12)

where

K2(T ) := ‖B‖2
N(T )2e(4σ+‖B‖+1)T+2‖B‖√

T
(
1 + ‖B‖N(T )2

)
. (2.13)

3. Proof of Theorem 1.1

Fixed any j ∈ N
∗ and any T > 0, our aim is to prove local exact controllability

in time T for the following problem⎧⎨
⎩

u′(t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T ]

u(0) = u0,
(3.1)

to the jth eigensolution ψj = e−λjtϕj of A, that is the solution of (3.1) when
p = 0 and u0 = ϕj . Hereafter, we will denote by u(·;u0, p) the solution of (3.1)
associated with initial condition u0 and control p.

We recall that A : D(A) ⊂ X → X is a densely defined linear operator
that satisfies (1.3) and we denote by {λk}k∈N∗ and {ϕk}k∈N∗ the eigenvalues
and the eigenfunctions of A, respectively. B : X → X is a bounded linear
operator. The pair {A,B} is assumed to be j-null controllable in any time,
with control cost that satisfies (1.4).

The proof of Theorem 1.1 is divided into two main parts: the case λj = 0,
that we build by a series of steps, and the case λj �= 0.

3.1. Case λj = 0
If λj = 0 our reference trajectory will be the stationary function ψj ≡ ϕj .
Given T > 0, we define Tf as

Tf := min
{

T,
π2

6
,
π2

6
T0

}
, (3.2)

where T0 is the constant in (1.4). We will actually build a control p ∈ L2(0, Tf )
such that u(Tf ;u0, p) = ψj , and then, by taking p(t) ≡ 0 for t > Tf , the
solution u of (3.1) will remain forever on the target trajectory ψj .

Now, we define

T1 :=
6
π2

Tf , (3.3)

and we observe that 0 < T1 ≤ 1. Then, we introduce the sequence {Tj}j∈N∗

as

Tj := T1/j2, (3.4)
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and the time steps

τn =
n∑

j=1

Tj , ∀n ∈ N, (3.5)

with the convention that
∑0

j=1 Tj = 0. Notice that
∑∞

j=1 Tj = π2

6 T1 = Tf .

Remark 3.1. Note that the sequence of times (Tj)j∈N∗ is strictly decaying
towards 0, whereas the sequence of times (τj)j∈N∗ is strictly increasing and
converges to Tf .

Set v := u − ϕj . We will consider the equation satisfied by v on suitable
intervals of time [s0, s1] and suitable initial data v0 at the initial time s0, as
follows. Given any 0 ≤ s0 ≤ s1 ≤ T , and any v0 in X, v is the solution of the
following Cauchy problem⎧⎨

⎩
v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕj = 0, t ∈ [s0, s1]

v(s0) = v0.
(3.6)

We denote by v(·; v0, s0, p) the solution of (3.6) associated with initial condition
v0 at time s0 and control p. Observe that proving the controllability of u to
ψj = ϕj in time Tf is equivalent to show the null controllability of v, that is,
v(Tf ; v0, 0, p) = 0, where v0 = u0 − ϕj .

The strategy of the proof consists first of building a control p1 ∈ L2(0, T1)
such that at time T1 the solution of (3.6) can be estimated by the square of the
initial condition. We then iterate the procedure on consecutive time intervals
of the form [τn−1, τn]: each time we construct a control pn ∈ L2(τn−1, τn)
such that the solution of (3.6) on [τn−1, τn] at time τn is estimated by the
square of the initial condition on such interval. Hence, combining all those
estimates and letting n go to infinity, we finally deduce that there exists a
control p ∈ L2

loc(0,+∞) such that v(Tf ; v0, 0, p) = 0 and so u(Tf ;u0, p) = ϕj .
In practice, we shall build, by induction, controls pn ∈ L2(τn−1, τn) for

n ≥ 1 such that, setting

qn(t) :=
n∑

j=1

pj(t)χ[τj−1,τj ](t),

vn := v(τn; v0, 0, qn),

(3.7)

it holds that
1. ‖pn‖L2(τn−1,τn) ≤ N(Tn) ‖vn−1‖ ,

2. y(τn; vn−1, τn−1, pn) = 0,
3. ‖v(τn; vn−1, τn−1, pn)‖ ≤ e(

∑n
j=1 2n−jj2−2n6)Γ0/T1 ,

4. ‖v(τn; vn−1, τn−1, pn)‖ ≤ ∏n
j=1 K(Tj)2

n−j ‖v0‖2n

,

(3.8)

where y(·; vn−1, τn−1, pn) is the solution of (2.7) in [τn−1, τn], with initial con-
dition vn−1 and control pn, and K(·) is defined in (2.13).

Observe that, by construction,

vn = v(τn; v0, 0, qn) = v(τn; vn−1, τn−1, pn), ∀n ≥ 1.
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3.1.1. First iteration. Let us start by studying control problem (3.6) in the
first time interval [s0, s1] = [τ0, τ1] = [0, T1]. Recalling that {A,B} is j-null
controllable in any time, given v0 ∈ X there exists a control p1 ∈ L2(0, T1)
such that

‖p1‖L2(0,T1)
≤ N(T1) ‖v0‖ , and y(T1; v0, 0, p1) = 0, (3.9)

where N(T1) is the control cost and y(·; v0, 0, p1) is the solution of the linear
problem (2.7). So, the first two items of (3.8) for n = 1 are fulfilled. We now
apply Proposition 2.3 deducing that

sup
t∈[0,T1]

‖v(t; v0, 0, p1)‖2 ≤ C1(T1, ‖v0‖) ‖v0‖2
, (3.10)

where C1(T1, ‖v0‖) = e(2σ+‖B‖)T1+2‖B‖N(T1)
√

T1‖v0‖(1 + ‖B‖N(T1)2).
We measure how close from 0 the solution of (3.6) is steered at time T1 by

control p1. For this purpose, we introduce the function w(·) := v(·; v0, 0, p1) −
y(·; v0, 0, p1) which satisfies the following Cauchy problem⎧⎨

⎩
w′(t) + Aw(t) + p1(t)Bv(t) = 0, t ∈ [0, T1]

w(0) = 0.
(3.11)

Thanks to Proposition 2.4, if

N(T1) ‖v0‖ ≤ 1, (3.12)

then, the solution of (3.11) satisfies

‖w(T1; 0, p1)‖ = ‖v(T1; v0, 0, p1)‖ ≤ K(T1) ‖v0‖2
, (3.13)

where K(·) is defined on (0,∞) as

K2(τ) := ‖B‖2
N(τ)2e(4σ+‖B‖+1)τ+2‖B‖√

τ
(
1 + ‖B‖N(τ)2

)
. (3.14)

Notice that, the first equality in (3.13) holds true because control p1 steers to
0 the solution of the linear problem [see (3.9)].

Remark 3.2. Observe that function K(·) satisfies

K2(τ) ≤ ‖B‖2
N2(τ)e(4σ+3‖B‖+1)

(
1 + ‖B‖ N2(τ)

)
, ∀ 0 < τ ≤ 1.

Therefore, since T1 = min{6T/π2, 1, T0}, combining the above inequality with
(1.4), we deduce that there exists a constant Γ0 > ν such that

K(τ) ≤ eΓ0/τ , ∀ 0 < τ ≤ T1. (3.15)

where T0 is defined in (1.4).
Note that a suitable choice of constant Γ0 such that (3.15) holds is (1.6).

We now define the radius of the neighborhood of ϕj where we take the
initial condition u0 as in (1.7). Let u0 ∈ BRT

(ϕj), or equivalently v0 = u0 −
ϕj ∈ BRT

(0), be chosen arbitrarily. With this choice we have that

N(T1) ‖v0‖ ≤ eν/T1e−6Γ0/T1 ≤ e−5Γ0/T1 ≤ 1,

and (3.12) is satisfied. Therefore, we get that

‖v(T1; v0, 0, p1)‖ ≤ K(T1) ‖v0‖2 ≤ e−11Γ0/T1 , (3.16)
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which proves 3. and 4. of (3.8) for n = 1.

3.1.2. Iterative step. Now, suppose that we have built controls pj ∈ L2(τj−1, τj)
such that (3.8) holds for each j = 1, . . . , n − 1. In particular, for j = n − 1,
there exists pn−1 ∈ L2(τn−1, τn) which verifies

1. ‖pn−1‖L2(τn−2,τn−1)
≤ N(Tn−1) ‖vn−2‖ ,

2. y(τn−1; vn−2, τn−2, pn−1) = 0,
3. ‖v(τn−1; vn−2, τn−2, pn−1)‖ ≤ e(

∑n−1
j=1 2n−1−jj2−2n−16)Γ0/T1 ,

4. ‖v(τn−1; vn−2, τn−2, pn−1)‖ ≤ ∏n−1
j=1 K(Tj)2

n−1−j ‖v0‖2n−1

.

(3.17)

We shall now prove that there exists pn ∈ L2(τn−1, τn) such that every item
of (3.8) is fulfilled. We defined qn−1 and vn−1 as in (3.7) and we consider the
following problem{

v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕj = 0, [τn−1, τn]
v(τn−1) = vn−1,

(3.18)

where the control p has still to be suitably chosen. By the change of variables
s = t − τn−1 and the definition (3.5), we shift the problem from [τn−1, τn]
into the interval [0, Tn]. We introduce the functions ṽ(s) = v(s + τn−1) and
p̃(s) = p (s + τn−1) and we rewrite (3.18) as⎧⎨

⎩
ṽ′(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕj = 0, s ∈ [0, Tn]

ṽ(0) = vn−1.
(3.19)

Recalling that {A,B} is j-null controllable in any time, there exists a control
p̃n ∈ L2(0, Tn) such that

‖p̃n‖L2(0,Tn) ≤ N(Tn) ‖vn−1‖ and ỹ(Tn, vn−1, 0, p̃n) = 0,

where ỹ(·; vn−1, 0, p̃n) is the solution of the linear problem (2.7) on [0, Tn]. Fur-
thermore, since vn−1 = v(τn−1; v0, 0, qn−1) = v(τn−1; vn−2, τn−2, pn−1), from
3. of (3.17) we obtain that

N(Tn) ‖vn−1‖ ≤ eνn2/T1e(
∑n−1

j=1 2n−1−jj2−2n−16)Γ0/T1

≤ e(n2+(−(n−1)2−4(n−1)+2n−16−6−2n−16)Γ0/T1

= e−(2n+3)Γ0/T1 ≤ 1,

(3.20)

where we have used that the constant of the control cost ν is less than or equal
to Γ0 (see Remark 3.2), and the identity

n∑
j=0

j2

2j
= 2−n(−n2 − 4n + 6(2n − 1)), n ≥ 0, (3.21)

which can be easily checked by induction.
We now choose the control p̃ = p̃n in (3.19) and still denote by ṽ the

corresponding solution. We set w = ṽ − ỹ. Then, w solves (2.10) with T = Tn
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and p = p̃n. So, we can apply Proposition 2.4 with T = Tn to problem (3.19)
and since w(Tn; 0, p̃n) = ṽ(Tn; vn−1, 0, p̃n), we obtain that

‖ṽ(Tn; vn−1, 0, p̃n)‖ ≤ K(Tn) ‖vn−1‖2
.

We shift back the problem into the original interval [τn−1, τn], we define pn(t) :=
p̃n(t − τn−1), and we get

‖pn‖L2(τn−1,τn) ≤ N(Tn) ‖vn−1‖ , and y(τn, vn−1, τn−1, pn) = 0,

and

‖v(τn; vn−1, τn−1, pn)‖ ≤ K(Tn) ‖vn−1‖2
. (3.22)

So, we have proved the first two items of (3.8). Moreover, thanks to 3. of (3.17)
and (3.15), that is, K(Tn) ≤ eΓ0n2/T1 , we deduce that

‖v(τn; vn−1, τn−1, pn)‖ ≤ eΓ0n2/T1

[
e(

∑n−1
j=1 2n−1−jj2−2n−16)Γ0/T1

]2

= e(
∑n

j=1 2n−jj2−2n6)Γ0/T1 , (3.23)

that is the third item of (3.8). Finally, using again (3.22) and 4. of (3.17) we
obtain that

‖v(τn; vn−1, τn−1, pn)‖ ≤ K(Tn)

⎡
⎣n−1∏

j=1

K(Tj)2
n−1−j ‖v0‖2n−1

⎤
⎦

2

=
n∏

j=1

K(Tj)2
n−j ‖v0‖2n

.

This concludes the induction argument and the proof of (3.8).
We are now ready to complete the proof of Theorem 1.1 for the case

λj = 0. We observe that for all n ∈ N
∗

‖v(τn; vn−1, τn−1, pn)‖ ≤
n∏

j=1

K(Tj)2
n−j ‖v0‖2n

≤
n∏

j=1

(
eΓ0j2/T1

)2n−j

‖v0‖2n

= eΓ02
n/T1

∑n
j=1 j2/2j ‖v0‖2n

≤ eΓ02
n/T1

∑∞
j=1 j2/2j ‖v0‖2n ≤

(
e6Γ0/T1 ‖v0‖

)2n

(3.24)

where we have used (3.15) and
∑∞

j=1 j2/2j = 6. Notice that (3.24) is equivalent
to

‖v(τn; v0, 0, qn)‖ ≤
(
e6Γ0/T1 ‖v0‖

)2n

, (3.25)

where qn(t) =
∑n

j=1 pj(t)χ[τj−1,τj ](t). We now take the limit as n → ∞ in
(3.25) and we get
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∥∥∥∥u
(

π2

6
T1;u0, q∞

)
− ϕj

∥∥∥∥ =
∥∥∥∥v

(
π2

6
T1; v0, 0, q∞

)∥∥∥∥ = ‖v(Tf ; v0, 0, q∞)‖ ≤ 0

(3.26)

since by hypothesis u0 ∈ BRT
(ϕj), with RT defined in (1.7), and so ‖v0‖ <

e−6Γ0/T1 . This means that, we have built a control p ∈ L2
loc([0,∞)), defined

by

p(t) =

⎧⎨
⎩
∑∞

n=1 pn(t)χ[τn−1,τn](t), t ∈ (0, Tf ]

0, t ∈ (Tf ,+∞)
(3.27)

for which the solution u of (3.1) reaches the jth eigensolution ψj = ϕj in time
Tf , less than or equal to T , and stays on it forever.

Observe that, thanks to the first item of (3.8) and to (3.20), we are able
to yield a bound for the L2-norm of such a control:

‖p‖2
L2(0,T ) =

∞∑
n=1

‖pn‖2
L2(τn−1,τn)

≤
∞∑

n=1

(N(Tn) ‖v (τn−1)‖)2 ≤
∞∑

n=1

e−2(2n+3)CK/T1

≤ e−6CK/T1

e4CK/T1 − 1
=

e−π2CK/Tf

e2π2CK/(3Tf ) − 1
.

(3.28)

Notice that since (3.2) holds, (3.28) implies (1.5).

3.2. Case λj �= 0
Now, we face the case λj �= 0. We define the operator

Aj := A − λjI.

We proved in [1, Lemma 4.7] that if {A,B} is j-null controllable, then the
same holds for the pair {Aj , B}. Furthermore, it is easy to check that also
condition (1.4) is verified by the control cost associated with {Aj , B}, if the
same property holds for the control cost associated with the pair {A,B}. In
particular, if we call Nj(·) the control cost associated to {Aj , B}, then

Nj(τ) ≤ e(ν+|λj |)/τ , ∀ 0 < τ ≤ min{1, T0},

where ν, T0 > 0 are the constants in (1.4).
It is possible to check that Aj satisfies (1.3) and moreover it has the same

eigenfuctions, {ϕk}k∈N∗ , of A, while the eigenvalues are given by

μk = λk − λj , ∀ k ∈ N
∗.

In particular, μj = 0.
We define the function z(t) = eλjtu(t), where u is the solution of (3.1).

Then, z solves the following problem⎧⎨
⎩

z′(t) + Ajz(t) + p(t)Bz(t) = 0, t ∈ [0, T ],

z(0) = u0.
(3.29)
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We define Tf as in (3.2) and RT as in (1.7). We deduce from the previous
analysis that, if u0 ∈ BRT

(ϕj), then there exists a control p ∈ L2([0,+∞))
that steers the solution z to the eigenstate ϕj in time Tf ≤ T . This implies
the exact controllability of u to the eigensolution ψj(t) = e−λjtϕj : indeed,

‖u (Tf ;u0, p) − ψj (Tf )‖ =
∥∥e−λjTf z (Tf ) − e−λjTf ϕj

∥∥
= e−λjTf ‖z (Tf ) − ϕj‖ = 0.

Remark 3.3. We observe that, from (3.28), it follows that ‖p‖L2(0,Tf ) → 0 as
Tf → 0. This fact is not surprising since as Tf approaches 0, also the size of
the neighborhood where the initial condition can be chosen goes to zero.

4. Proof of Theorem 1.2

Before showing the proof of Theorem 1.2, we define formally for any fixed
j ∈ N

∗ the following function

GM,j(T ) :=
M

T 2
eM/T

∞∑
k=1

e−2ωkT+M
√

ωk

|〈Bϕj , ϕk〉|2 , (4.1)

where M is a positive constant, ωk := λk −λ1, for all k ∈ N
∗, {λk}k∈N∗ are the

eigenvalues of A. In Lemma 4.1 below, we investigate the behavior of GM,j(T )
for small values of T . Such a result will be crucial for the analysis of the control
cost N(T ) in Theorem 1.2.

Lemma 4.1. Let A : D(A) ⊂ X → X be such that (1.3) and (1.10) hold and
B : X → X be such that (1.11) holds. Then, for any M,T > 0 the series in
(4.1) is convergent and there exists a positive constant νj, such that

GM,j(T ) ≤ e2νj/T , ∀ 0 < T ≤ 1. (4.2)

Moreover, a suitable choice of νj = νj(M, b, q, α) is (1.13).

Proof. We first observe that there exists a constant C > 0 such that

|λk − λj | ≤ C(λk − λ1) = Cωk, ∀ k ∈ N
∗.

So, thanks to assumption (1.11), we have that

GM,j(T ) =
M

T 2
eM/T

∞∑
k=1

e−2ωkT+M
√

ωk

|〈Bϕj , ϕk〉|2

≤ M

T 2
eM/T

⎡
⎣ 1

|〈Bϕj , ϕj〉|2 +
1
b2

∞∑
k=1, k 	=j

(
ω2q

k e−ωkT
)

e−ωkT+M
√

ωk

⎤
⎦ .

(4.3)

For any ω ≥ 0 we set f(ω) = e−ωT+M
√

ω. The maximum value of f is attained
at ω =

(
M
2T

)2
. So, we can bound GM,j(T ) as follows

GM,j(T ) ≤ M

T 2
eM/T

[
1

|〈Bϕj , ϕj〉|2 +
eM2/(4T )

b2

∞∑
k=1

ω2q
k e−ωkT

]
. (4.4)
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Now, for any ω ≥ 0 we define the function g(ω) = ω2qe−ωT . Its derivative
is given by

g′(ω) = (2q − ωT )ω2q−1e−ωT

and therefore we deduce that

g(ω) is

⎧⎨
⎩

increasing if 0 ≤ ω < (2q)/T

decreasing if ω ≥ (2q)/T

and g has a maximum at ω = (2q)/T . We define the following index:

k1 := k1(T ) = sup
{

k ∈ N
∗ : ωk ≤ 2q

T

}

Note that k1(T ) goes to ∞ as T converges to 0. We can rewrite the sum in
(4.4) as follows

∞∑
k=1

ω2q
k e−ωkT =

∑
k≤k1−1

ω2q
k e−ωkT +

∑
k1≤k≤k1+1

ω2q
k e−ωkT +

∑
k≥k1+2

ω2q
k e−ωkT .

(4.5)

For any k ≤ k1 − 1, we have∫ ωk+1

ωk

ω2qe−ωT dω ≥ (ωk+1 − ωk)ω2q
k e−ωkT ≥ α

√
ω2 ω2q

k e−ωkT (4.6)

and for any k ≥ k1 + 2∫ ωk

ωk−1

ω2qe−ωT dω ≥ (ωk − ωk−1)ω
2q
k e−ωkT ≥ α

√
ω2 ω2q

k e−ωkT . (4.7)

So, by using estimates (4.6) and (4.7), (4.5) becomes
∞∑

k=1

ω2q
k e−ωkT ≤ 2

α
√

ω2

∫ ∞

0

ω2qe−ωT dω +
∑

k1≤k≤k1+1

ω2q
k e−ωkT . (4.8)

Furthermore, recalling that g has a maximum for ω = 2q/T , it holds that

k = k1, k1 + 1 ⇒ ω2q
k e−ωkT ≤ (2q/T )2q

e−2q. (4.9)

Finally, the integral term of (4.8) can be rewritten as∫ ∞

0

ω2qe−ωT dω =
1
T

∫ ∞

0

( s

T

)2q

e−sds =
1

T 1+2q

∫ ∞

0

s2qe−sds =
Γ(2q + 1)

T 1+2q
,

(4.10)

where by Γ(·) we indicate the Euler integral of the second kind.
Therefore, we conclude from (4.9) and (4.10) that there exist two con-

stants Cq, Cq,α > 0 such that
∞∑

k=1

ω2q
k e−ωkT ≤ Cq

T 2q
+

Cα,q

T 1+2q
. (4.11)
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We use this last bound to prove that there exists νj > 0 such that

GM,j(T ) ≤ M

T 2
eM/T

[
1

|〈Bϕj , ϕj〉|2 +
eM2/(4T )

b2

(
Cq

T 2q
+

Cα,q

T 1+2q

)]

≤ e2νj/T ∀ T ∈ (0, 1], (4.12)

as claimed. �
Remark 4.2. Observe that Lemma 4.1 holds even under different behaviors
of the lower bound of the Fourier coefficients of Bϕj . For instance, one can
assume

〈Bϕj , ϕj〉 �= 0 and |〈Bϕj , ϕk〉| ≥ be−c
√

|λk−λj |, ∀ k �= j

with b, c > 0, instead of assumption (1.11).

Now we proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let T > 0 and consider problem (2.7). For any y0 ∈ X
and p ∈ L2(0, T ) there exists a unique strong solution y ∈ C0([0, T ],X) of
(2.7) that can be written as

y(t) = e−tAy0 −
∫ t

0

e−(t−s)Ap(s)Bϕjds, (4.13)

(see, for instance, [10, Proposition 3.1, p. 130]).
Our aim is to find a control p ∈ L2(0, T ) for which y(T ; y0, 0, p) = 0, that

is equivalent to the following identity
∑
k∈N∗

〈y0, ϕk〉e−λkT ϕk =
∫ T

0

p(s)
∑
k∈N∗

〈Bϕj , ϕk〉e−λk(T−s)ϕkds.

Since, by hypothesis, the eigenfunctions of A form an orthonormal basis of X,
the above formula reads as

〈y0, ϕk〉 =
∫ T

0

eλksp(s)〈Bϕj , ϕk〉ds, ∀ k ∈ N
∗,

or, equivalently, ∫ T

0

eλksp(s)ds =
〈y0, ϕk〉

〈Bϕj , ϕk〉 , ∀ k ∈ N
∗. (4.14)

By defining q(s) := eλ1sp(s) and ωk := λk − λ1 ≥ 0, the family of equations
(4.14) can be rewritten as∫ T

0

eωksq(s)ds =
〈y0, ϕk〉

〈Bϕj , ϕk〉 , ∀ k ∈ N
∗. (4.15)

Thanks to hypothesis (1.10), we can apply [15, Theorem 2.4] that ensures
the existence of a biorthogonal family {σk}k∈N∗ to the family of exponentials
{ζk}k∈N∗ , ζk(s) = eωks, s ∈ [0, T ].

We claim that the series∑
k∈N∗

〈y0, ϕk〉
〈Bϕj , ϕk〉σk(s), (4.16)
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is convergent in L2(0, T ). Indeed, thanks to the following estimate, from [15,
Theorem 2.4], for the biorthogonal family {σk}k∈N∗

‖σk‖2
L2(0,T ) ≤ C2

α(T )e−2ωkT eC
√

ωk/α, ∀ k ∈ N
∗,

with C > 0 independent of T and α, and

C2
α(T ) =

⎧⎨
⎩

C
(

1
T + 1

T 2α2

)
e

C
α2T if T < 1

α2 ,

C2α2 if T ≥ 1
α2 ,

we obtain

∑
k∈N∗

∣∣∣∣ 〈y0, ϕk〉
〈Bϕj , ϕk〉

∣∣∣∣ ‖σk‖L2(0,T ) ≤ ‖y0‖
(∑

k∈N∗

‖σk‖2
L2(0,T )

|〈Bϕj , ϕk〉|2
)1/2

≤ ‖y0‖
(

C2
α(T )

∑
k∈N∗

e−2ωkT eC
√

ωk/α

|〈Bϕj , ϕk〉|2 )

)1/2

.

Observe that, by Lemma 4.1, the right-hand side of the above estimate is finite
for any T > 0.

Therefore, we define the control q as

q(s) :=
∑
k∈N∗

〈y0, ϕk〉
〈Bϕj , ϕk〉σk(s),

and we deduce that q ∈ L2(0, T ) satisfies (4.15) and furthermore

‖q‖L2(0,T ) ≤ Cα(T )ΛT ‖y0‖ ,

where

ΛT :=

(∑
k∈N∗

e−2ωkT eC
√

ωk/α

|〈Bϕj , ϕk〉|2
)1/2

. (4.17)

Finally, returning to p, we obtain that

‖p‖2
L2(0,T ) =

∫ T

0

e−2λ1s|q(s)|2ds ≤ max
{
1, e−2λ1T

} ‖q‖2
L2(0,T ) . (4.18)

By taking

N(T ) := max
{
1, e−λ1T

}
Cα(T )ΛT , (4.19)

we deduce that {A,B} is j-null controllable in any time T > 0 with associated
control cost (4.19).

What remains to prove is estimate (1.4) for the control cost N(T ) defined
in (4.19), for T small. Let us define T0 as in (1.12). Then for any 0 < T < T0,
it holds that

C2
α(T ) = C

(
1
T

+
1

T 2α2

)
e

C
α2T .

We can assume without loss of generality that the constant C ≥ 1, since we
can replace it by max {1, C}. We assume for all the sequel that C ≥ 1.
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Since 0 < T < T0 ≤ 1, we claim that there exists M̃ > 0 such that

C2
α(T ) ≤ M̃

T 2
eM̃/T ∀ T ∈ (0, T0). (4.20)

Indeed, we have

C2
α(T ) ≤ C

(
1 +

1
α2

)
1

T 2
e

C
α2T ∀ T ∈ (0, T0).

We set

M̃ := C

(
1 +

1
α2

)
.

We note that since C ≥ 1, we have
C

α2
≤ M̃.

Hence from the two above estimates, we deduce (4.20). Moreover, we easily
prove that

max
{
1, e−λ1T

} ≤ e|λ1| ∀ T ∈ (0, T0).

Therefore, the control cost N(T ) given by (4.19) can be bounded from above
as follows

N(T ) ≤
√

GM,j(T ),

where M is defined as in (1.14) and the function GM,j(·) is defined in (4.1).
Finally, thanks to Lemma 4.1, we deduce that N(T ) fulfills property (1.4) with
ν = νj . �

5. Proof of Theorems 1.4 and 1.5

Before proving Theorem 1.4, let us show a preliminary result that demonstrates
the statement in the case of an accretive operator with λ1 = 0.

Lemma 5.1. Let A : D(A) ⊂ X → X be a densely defined linear operator such
that (1.3) holds with σ = 0 and let B : X → X be a bounded linear operator.
Let {A,B} be a 1-null controllable pair which satisfies (1.4). Furthermore, we
assume λ1 = 0. Then, there exists a constant r1 > 0 such that for any R > 0
there exists TR > 0 such that for all v0 ∈ X that satisfy

|〈v0, ϕ1〉| < r1, ‖v0 − 〈v0, ϕ1〉ϕ1‖ ≤ R, (5.1)

problem (2.4) is null controllable in time TR.

Proof. First step. We fix T = 1. Thanks to Theorem 1.1, there exists a
constant r1 > 0 such that, denoting by u1 the solution of (1.1) on [0, 1],
if ‖u1(0) − ϕ1‖ <

√
2r1 then there exists a control p1 ∈ L2(0, 1) for which

the solution of (1.1) with p replaced by p1, satisfies u1(1) = ϕ1. We set
v1 = u1 − ϕ1 on [0, 1]. We deduce that if ‖v1(0)‖ <

√
2r1 then there ex-

ists a control p1 ∈ L2(0, 1) for which the solution v1 of (2.4) on [0, 1] with p
replaced by p1, satisfies v1(1) = 0.
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Second step. Let v0 ∈ X be the initial condition of (2.4). We decompose v0 as
follows

v0 = 〈v0, ϕ1〉ϕ1 + v0,1,

where v0,1 ∈ ϕ⊥
1 and we suppose that |〈v0, ϕ1〉| < r1. If R ≤ r1, then ‖v0‖2 ≤

r2
1 +R2 ≤ 2r2

1 and we can directly apply the first step of the proof with TR = 1.
Otherwise, we define tR as

tR :=
1

2λ2
log

(
R2

r2
1

)
, (5.2)

and in the time interval [0, tR] we take the control p ≡ 0. Then, for all t ∈
[0, tR], we have that

‖v(t)‖2 ≤ ∥∥e−tA (〈v0, ϕ1〉ϕ1 + v0,1)
∥∥2

≤ |〈v0, ϕ1〉|2 + e−2λ2t ‖v0,1‖2
< r2

1 + e−2λ2tR2.

In particular, for t = tR, it holds that ‖v(tR)‖2
< 2r2

1.
Now, we define TR := tR + 1 and set v1(0) = v(tR). Thanks to the first

step of the proof, there exists a control p1 ∈ L2(0, 1), such that v1(1) = 0,
where v1 is the solution of (2.4) on [0, 1] with p replaced by p1.

Then v(t) = v1(t − tR) solves (2.4) in the time interval (tR, TR] with the
control p1(t − tR) that steers the solution v to 0 at TR. �
Proof of Theorem 1.4. We start with the case λ1 = 0. Let u0 ∈ X satisfy
(1.16). Set v(t) := u(t) − ϕ1, then v satisfies (2.4) and moreover v0 := v(0) =
u0−ϕ1 fulfills (5.1). Thus, by Lemma 5.1, problem (1.1) is exactly controllable
to the first eigensolution ψ1 ≡ ϕ1 in time TR.

Now, we consider the case λ1 > 0. As in the proof of Theorem 1.1, we
introduce the variable z(t) = eλ1tu(t) that solves problem (3.29). For such a
system, since the first eigenvalue of A1 is equal 0, we have the exact control-
lability to ϕ1 in time TR. Namely z(TR) = ϕ1, that is equivalent to the exact
controllability of u to ψ1:

z(TR) = ϕ1 ⇐⇒ eλ1TRu(TR) = ϕ1 ⇐⇒ u(TR) = ψ1(TR). (5.3)

The proof is thus complete. �
Observe that the strategy of the proof uses the fact that operator A

is accretive in all directions ϕj with j ≥ 1 and strictly accretive for j > 1.
Therefore one cannot allow A to be striclty dissipative in all directions. Since
the eigenvalues are counted in increasing order, the conclusion of Theorems
1.4 and 1.5 can only ensure global controllability to the first eigensolution.

The proof of Theorem 1.5 easily follows from Theorem 1.4.

Proof of Theorem 1.5. We assume (1.18). Suppose that γ := 〈u0, ϕ1〉 �= 0. We
decompose u0 as u0 = γϕ1 + ζ1, with ζ1 := u0 − 〈u0, ϕ1〉ϕ1 ∈ ϕ⊥

1 and define
ũ(t) := u(t)/γ. Hence, ũ solves{

ũ′(t) + Aũ(t) + p(t)Bũ(t) = 0, t > 0
ũ(0) = ϕ1 + ζ̃1,

(5.4)
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where ζ̃1 := ζ1/γ.
We apply Theorem 1.4 to (5.4) to deduce the existence of TR > 0 such

that ũ(TR) = ψ1(TR). Therefore, the solution of (1.1) with initial condition
u0 ∈ X that do not vanish along the direction ϕ1 can be exactly controlled in
time TR to the trajectory φ1(·) = 〈u0, ϕ1〉ψ1(·), where φ1 is defined in (1.17).

Note that if u0 ∈ X satisfies both u0 ∈ ϕ⊥
1 and (1.18), then we have

trivially that u0 ≡ 0. We then choose p ≡ 0, so that the solution of (1.1)
remains constantly equal to φ1 ≡ 0. �

6. Applications

In this section we present some examples of parabolic equations for which
Theorem 1.1 can be applied. The hypotheses (1.3),(1.10) and (1.11) have been
verified in [1,16], to which we refer for more details. We observe that, thanks
to [1, Remark 6.1], since the second order operators considered in the examples
are accretive (〈Ax, x〉 ≥ 0, for all x ∈ D(A)), it suffices to prove the following
gap condition

∃α > 0 :
√

λk+1 −
√

λk ≥ α, ∀ k ≥ 1, (6.1)

which implies (1.10).
Furthermore, we note that the global results Theorem 1.4 and Theorem

1.5 can be applied to any example below. Note also that the given examples
below are non-exhaustive.

6.1. Diffusion equation with Dirichlet boundary conditions

Let I = (0, 1) and X = L2(0, 1). Consider the following problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut(t, x) − uxx(t, x) + p(t)μ(x)u(t, x) = 0 x ∈ I, t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I.

(6.2)

We denote by A the operator defined by

D(A) = H2 ∩ H1
0 (I), Aϕ = −d2ϕ

dx2
.

and it can be checked that A satisfies (1.3). We indicate by {λk}k∈N∗ and
{ϕk}k∈N∗ the families of eigenvalues and eigenfunctions of A, respectively:

λk = (kπ)2, ϕk(x) =
√

2 sin(kπx), ∀ k ∈ N
∗.

It is easy to see that (6.1) holds true [and so (1.10)]:√
λk+1 −

√
λk = π, ∀ k ∈ N

∗.

Let B : X → X be the operator

Bϕ = μϕ
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with μ ∈ H3(I) such that

μ′(1) ± μ′(0) �= 0 and 〈μϕj , ϕk〉 �= 0 ∀ k ∈ N
∗. (6.3)

Observe that, for k �= j, integrating by parts, we find that

〈μϕj , ϕk〉 = 2
∫ 1

0

μ(x) sin(jπx) sin(kπx)dx

=
∫ 1

0

μ(x) (cos((k − j)πx) − cos((k + j)πx)) dx

=
[
μ(x)

(
sin((k − j)πx)

(k − j)π
− sin((k + j)πx)

(k + j)π

)]x=1

x=0

−
∫ 1

0

μ′(x)
(

sin((k − j)πx)
(k − j)π

− sin((k + j)πx)
(k + j)π

)
dx

=
[
μ′(x)

(
cos((k − j)πx)

(k − j)2π2
− cos((k + j)πx)

(k + j)2π2

)]x=1

x=0

−
∫ 1

0

μ′′(x)
(

cos((k − j)πx)
(k − j)2π2

− cos((k + j)πx)
(k + j)2π2

)
dx

=
(
μ′(1)(−1)k+j − μ′(0)

) 4kj

(k2 − j2)2π2

+
∫ 1

0

μ′′′(x)
(

sin((k − j)πx)
(k − j)3π3

− sin((k + j)πx)
(k + j)3π3

)
dx.

Since the integral terms represent the kth-Fourier coefficients of the integrable
functions μ′′′(x) cos(jπx) and μ′′′(x) sin(jπx), they converge to zero as k goes
to infinity. Furthermore, using that

kj ≥
√

|k2 − j2|, ∀ k, j ∈ N
∗

we deduce that there exists b > 0 such that

|λk − λj |3/2 |〈μϕj , ϕk〉| ≥ b, ∀ k �= j,

(see also [1, Sect. 6.1]). For instance, a suitable function that satisfies (6.3) is
μ(x) = x2: indeed, in this case

〈μϕj , ϕk〉 =

⎧⎪⎨
⎪⎩

4kj(−1)k+j

(k2−j2)2 , k �= j,

2j2π2−3
6j2π2 , k = j

and we observe that 〈μϕj , ϕj〉 �= 0. More generally, we can address the reader
to [2] to identify large classes of potential μ satisfying the requested properties.

Therefore, problem (6.2) is controllable to the jth eigensolution ψj in any
time T > 0 as long as u0 ∈ BRT

(ϕj), with RT > 0 a suitable constant, where
ψj(t, x) =

√
2 sin(jπx)e−j2π2t.
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6.2. Diffusion equation with Neumann boundary conditions

Let I = (0, 1), X = L2(I) and consider the Cauchy problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut(t, x) − uxx(t, x) + p(t)μ(x)u(t, x) = 0 x ∈ I, t > 0

ux(t, 0) = 0, ux(t, 1) = 0, t > 0

u(0, x) = u0(x). x ∈ I.

(6.4)

The operator A, defined by

D(A) = {ϕ ∈ H2(0, 1) : ϕ′(0) = 0, ϕ′(1) = 0}, Aϕ = −d2ϕ

dx2

satisfies (1.3) and has the following eigenvalues and eigenfunctions

λ0 = 0, ϕ0 = 1
λk = (kπ)2, ϕk(x) =

√
2 cos(kπx), ∀ k ≥ 1.

Thus, the gap condition (6.1) is fulfilled with α = π. Fixed j ∈ N, the jth
eigensolution is the function ψj(t, x) = e−λjtϕj(x).

We define B : X → X as the multiplication operator by a function
μ ∈ H2(I), Bϕ = μϕ, such that

μ′(1) ± μ′(0) �= 0 and 〈μϕj , ϕk〉 �= 0 ∀ k ∈ N. (6.5)

It can be proved, by reasoning as in the previous example, that there exists
b > 0 such that

|λk − λj | |〈μϕj , ϕk〉| ≥ b ∀ k �= j and 〈μϕj , ϕj〉 �= 0, (6.6)

(see also [1, Sect. 6.2]). For example, μ(x) = x2 satisfies (6.6). Indeed, it can
be shown that

〈μϕ0, ϕk〉 =

⎧⎪⎨
⎪⎩

2
√

2(−1)k

(kπ)2 , k ≥ 1,

1
3 , k = 0,

and for j �= 0

〈μϕj , ϕk〉 =

⎧⎪⎨
⎪⎩

4(−1)k+j(k2+j2)
(k2−j2)2π2 , k �= j,

1
3 + 1

2j2π2 , k = j.

Therefore, problem (6.4) is controllable to the jth eigensolution ψj in any
time T > 0 as long as u0 ∈ BRT

(ϕj), with RT > 0 a suitable constant.

6.3. Variable coefficient parabolic equation

Let I = (0, 1), X = L2(I) and consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut(t, x) − ((1 + x)2ux(t, x))x + p(t)μ(x)u(t, x) = 0 x ∈ I, t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I.

(6.7)
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We denote by A : D(A) ⊂ X → X the following operator

D(A) = H2 ∩ H1
0 (I), Aϕ = −((1 + x)2ϕx)x.

It can be checked that A satisfies (1.3) and that the eigenvalues and eigen-
functions have the following expression

λk =
1
4

+
(

kπ

ln 2

)2

, ϕk =

√
2

ln 2
(1 + x)−1/2 sin

(
kπ

ln 2
ln(1 + x)

)
.

Furthermore, {λk}k∈N∗ verifies the gap condition (6.1) with α = π/ ln 2.
We fix j ∈ N

∗ and define the operator B : X → X by Bϕ = μϕ, where
μ ∈ H2(I) is such that

2μ′(1) ± μ′(0) �= 0, and 〈μϕj , ϕk〉 �= 0 ∀ k ∈ N
∗. (6.8)

Hence, thanks to (6.8), it is possible to show that (1.11) is fulfilled with q = 3/2
(see [1, Sect. 6.3]). For instance, when j = 1, an example of a suitable function
μ that satisfies (6.8) is μ(x) = x, see [1] for the verification.

Thus, from Theorem 1.1, we deduce that, for any T > 0, system (6.7) is
controllable to the jth eigensolution if the initial condition u0 is close enough
to ϕj .

6.4. Diffusion equation in a 3D ball with radial data

In this example, we study the controllability of an evolution equation in the
three dimensional unit ball B3 for radial data. The bilinear control problem is
the following⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut(t, r) − Δu(t, r) + p(t)μ(r)u(t, r) = 0 r ∈ [0, 1], t > 0

u(t, 1) = 0, t > 0

u(0, r) = u0(r) r ∈ [0, 1]

(6.9)

where the Laplacian in polar coordinates for radial data is given by the fol-
lowing expression

Δϕ(r) = ∂2
rϕ(r) +

2
r
∂rϕ(r).

The function μ is a radial function as well in the space H3
r (B3), where the

spaces Hk
r (B3) are defined as follows

X := L2
r(B

3) =
{
ϕ ∈ L2(B3) | ∃ψ : R → R, ϕ(x) = ψ(|x|)}

Hk
r (B3) := Hk(B3) ∩ L2

r(B
3).

The domain of the Dirichlet Laplacian A := −Δ in X is D(A) = H2
r ∩

H1
0 (B3). We observe that A satisfies hypothesis (1.3). We denote by {λk}k∈N∗

and {ϕk}k∈N∗ the families of eigenvalues and eigenvectors of A, Aϕk = λkϕk,
namely

ϕk =
sin(kπr)√

2πr
, λk = (kπ)2 (6.10)
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∀ k ∈ N
∗, see [20, Sect. 8.14]. Since the eigenvalues of A are actually the same

of the Dirichlet 1D Laplacian, (6.1) is satisfied, as we have seen in Example
6.1.

Fixed j ∈ N
∗, let B : X → X be the multiplication operator Bu(t, r) =

μ(r)u(t, r), with μ be such that

μ′(1) ± μ′(0) �= 0, and 〈μϕj , ϕk〉 �= 0 ∀ k ∈ N
∗. (6.11)

Then, it can be proved that

|λk − λj |3/2 |〈μϕj , ϕk〉| ≥ b ∀ k �= j and 〈μϕj , ϕj〉 �= 0, (6.12)

with b a positive constant (see [1, Sect. 6.4]). For instance, μ(x) = x2 verifies
(6.11) and (6.12):

〈Bϕj , ϕk〉 =

⎧⎪⎨
⎪⎩

4(−1)k+jkj
(k2−j2)2π2 , k �= j,

2j2π2−3
6j2π2 , k = j.

Therefore, by applying Theorem 1.1, we conclude that for any T > 0, the
exists a suitable constant RT > 0 such that, if u0 ∈ BRT

(ϕj), problem (6.9) is
exactly controllable to the jth eigensolution ψj in time T .

6.5. Degenerate parabolic equation

In this last section we want to address an example of a control problem for a
degenerate evolution equation of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − (xγux)x + p(t)x2−γu = 0, (t, x) ∈ (0,+∞) × (0, 1)

u(t, 1) = 0,

⎧⎨
⎩

u(t, 0) = 0, if γ ∈ [0, 1),

(xγux) (t, 0) = 0, if γ ∈ [1, 3/2),

u(0, x) = u0(x).

(6.13)

where γ ∈ [0, 3/2) describes the degeneracy magnitude, for which Theorem 1.1
applies.

If γ ∈ [0, 1) problem (6.13) is called weakly degenerate and the natural
spaces for the well-posedness are the following weighted Sobolev spaces. Let
I = (0, 1) and X = L2(I), we define

H1
γ(I) =

{
u ∈ X : u is absolutely continuous on [0, 1], xγ/2ux ∈ X

}

H1
γ,0(I) =

{
u ∈ H1

γ(I) : u(0) = 0, u(1) = 0
}

H2
γ(I) =

{
u ∈ H1

γ(I) : xγux ∈ H1(I)
}

.

We denote by A : D(A) ⊂ X → X the linear degenerate second order operator⎧⎨
⎩

∀u ∈ D(A), Au := −(xγux)x,

D(A) := {u ∈ H1
γ,0(I), xγux ∈ H1(I)}.

(6.14)
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It is possible to prove that A satisfies (1.3) (see, for instance [11]) and further-
more, if we denote by {λk}k∈N∗ the eigenvalues and by {ϕk}k∈N∗ the corre-
sponding eigenfunctions, it turns out that the gap condition (6.1) is fulfilled
with α = 7

16π (see [19], p. 135).
If γ ∈ [1, 2), problem (6.13) is called strong degenerate and the corre-

sponding weighted Sobolev space are described as follows: given I = (0, 1) and
X = L2(I), we define

H1
γ(I) =

{
u ∈ X : u is absolutely continuous on (0, 1], xγ/2ux ∈ X

}

H1
γ,0(I) :=

{
u ∈ H1

γ(I) : u(1) = 0
}

,

H2
γ(I) =

{
u ∈ H1

γ(I) : xγux ∈ H1(I)
}

.

In this case the operator A : D(A) ⊂ X → X is defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀u ∈ D(A), Au := −(xγux)x,

D(A) :=
{
u ∈ H1

γ,0(I) : xγux ∈ H1(I)
}

=
{
u ∈ X : u is absolutely continuous in (0,1] , xγu ∈ H1

0 (I),
xγux ∈ H1(I) and (xγux)(0) = 0

}
and it has been proved that (1.3) holds true (see, for instance [14]) and that
(6.1) is satisfied for α = π

2 (see [19]).
We fix j = 1 and for all γ ∈ [0, 3/2), we define the linear operator

B : X → X by Bu(t, x) = x2−γu(t, x) and in [16, Proof of Theorem 2.2] we
have proved that there exists a constant b > 0 such that

|λk − λ1|3/2 |〈Bϕ1, ϕk〉| ≥ b ∀ k > 1 and 〈Bϕ1, ϕ1〉 �= 0.

Finally, by applying Theorem 1.1, we ensure the exact controllability of
problem (6.13) to the first eigensolution, for both weakly and strongly degen-
erate problems.
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Appendix A Proofs of Propositions 2.3 and 2.4

In this Appendix we present the proofs of Propositions 2.3 and 2.4 which follow
those of [1, Proposition 4.3] and [1, Proposition 4.4], respectively. However,
since the hypotheses of Propositions 2.3 and 2.4 are slightly different with
respect to [1, Proposition 4.3] and [1, Proposition 4.4], we preferred to show
their proofs in the current settings.

Proof of Proposition 2.3. Thanks to Remark 2.2, taking the scalar product of
(2.4) with v, we obtain

〈v′(t), v(t)〉 + 〈Av(t), v(t)〉 + p(t)〈Bv(t) + Bϕj , v(t)〉 = 0, for a.e. t ∈ [ε, T ].
(A.1)

Thus, we get that for a.e. t ∈ [ε, T ]

1
2

d

dt
‖v(t)‖2 + 〈Av(t), v(t)〉 ≤ ‖B‖

(
|p(t)| ‖v(t)‖2 + |p(t)| ‖ϕj‖ ‖v(t)‖

)

≤ ‖B‖
(

|p(t)| ‖v(t)‖2 +
1
2
|p(t)|2 +

1
2

‖v(t)‖2

)
.

(A.2)

Therefore, since A satisfies (2.1), we have that

1
2

d

dt
‖v(t)‖2 ≤

(
σ + ‖B‖ |p(t)| +

‖B‖
2

)
‖v(t)‖2

+
1
2

‖B‖ |p(t)|2, for a.e. t ∈ [ε, T ].

We now integrate the last inequality from ε to t to obtain∫ t

ε

d

ds
‖v(s)‖2

ds

≤
∫ t

ε

(2σ + ‖B‖ (2|p(s)| + 1)) ‖v(s)‖2
ds

+ ‖B‖
∫ T

0

|p(s)|2ds, for a.e. t ∈ [ε, T ],

and, by Gronwall’s inequality, we conclude that

‖v(t)‖2 ≤
(

‖v(ε)‖2 + ‖B‖
∫ T

0

|p(s)|2ds

)
e
∫ t
ε
(2σ+‖B‖(2|p(s)|+1))ds,

for a.e. t ∈ [ε, T ].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Taking the limit as ε → 0, we find

‖v(t)‖2 ≤
(

‖v0‖2 + ‖B‖
∫ T

0

|p(s)|2ds

)
e
∫ t
0 (2σ+‖B‖(2|p(s)|+1))ds,

for a.e. t ∈ [0, T ].

Thus, taking the supremum over the interval [0, T ], the last inequality becomes

sup
t∈[0,T ]

‖v(t)‖2 ≤ e2‖B‖√
T‖p‖L2(0,T )+(2σ+‖B‖)T

(
‖v0‖2 + ‖B‖ ‖p‖2

L2(0,T )

)
.

Finally, recalling estimate (2.5) for p, we get (2.6). �

Proof of Proposition 2.4. Since w ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)), taking the
scalar product of both members of the equation in (2.10) with w(t), we obtain

1
2

d

dt
‖w(t)‖2 ≤ σ ‖w(t)‖2 + |p(t)| ‖Bv(t)‖ ‖w(t)‖

≤
(

1
2

+ σ

)
‖w(t)‖2 + ‖B‖2 1

2
|p(t)|2 ‖v(t)‖2

, for a.e t ∈ [0, T ].
(A.3)

Then, by Gronwall’s inequality, and appealing to (2.6) and (2.5), we get

sup
t∈[0,T ]

‖w(t)‖2

≤ ‖B‖2
e(2σ+1)T ‖p‖2

L2(0,T ) sup
t∈[0,T ]

‖v(t)‖2

≤ ‖B‖2
e(4σ+‖B‖+1)T+2‖B‖N(T )

√
T‖v0‖(1 + ‖B‖N(T )2) ‖v0‖2 ‖p‖2

L2(0,T )

≤ ‖B‖2
N(T )2e(4σ+‖B‖+1)T+2‖B‖N(T )

√
T‖v0‖(1 + ‖B‖N(T )2) ‖v0‖4

.

(A.4)

Using (2.11), we obtain that

sup
t∈[0,T ]

‖w(t)‖2 ≤ K(T )2 ‖v0‖4
,

which yields to (2.12) and (2.13). �
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