This paper presents two innovative approaches to design symbolic controllers for dynamical systems. The first novelty involves a new trajectory-based strategy for defining the states of a symbolic model, which provides a more accurate representation of the system's dynamics than the traditional grid-based technique. The second novelty concerns using a Bounded-parameter Markov Decision Process rather than a Finite Transition System to model the behavior of a symbolic model. This procedure allows for handling the system's stochastic behavior and considers uncertainties. The effectiveness of the novel approaches presented is demonstrated through numerical results.

Tenaglia, A., Possieri, C., Carnevale, D. (2023). A Trajectory-Based Stochastic Approach to Symbolic Control. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.2871-2876). IEEE [10.1109/CDC49753.2023.10383250].

A Trajectory-Based Stochastic Approach to Symbolic Control

Tenaglia A.
Membro del Collaboration Group
;
Possieri C.
Membro del Collaboration Group
;
Carnevale D.
Membro del Collaboration Group
2023-01-01

Abstract

This paper presents two innovative approaches to design symbolic controllers for dynamical systems. The first novelty involves a new trajectory-based strategy for defining the states of a symbolic model, which provides a more accurate representation of the system's dynamics than the traditional grid-based technique. The second novelty concerns using a Bounded-parameter Markov Decision Process rather than a Finite Transition System to model the behavior of a symbolic model. This procedure allows for handling the system's stochastic behavior and considers uncertainties. The effectiveness of the novel approaches presented is demonstrated through numerical results.
62nd IEEE Conference on Decision and Control (CDC)
Singapore
2023
Rilevanza internazionale
2023
Settore ING-IND/09
Settore IIND-06/B - Sistemi per l'energia e l'ambiente
English
Intervento a convegno
Tenaglia, A., Possieri, C., Carnevale, D. (2023). A Trajectory-Based Stochastic Approach to Symbolic Control. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp.2871-2876). IEEE [10.1109/CDC49753.2023.10383250].
Tenaglia, A; Possieri, C; Carnevale, D
File in questo prodotto:
File Dimensione Formato  
IEEE 5.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/368263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact