In this paper we investigate the cone Pseffn(Cd) of pseudoeffective n-cycles in the symmetric product Cd of a smooth curve C. We study the convex-geometric properties of the cone Dn(Cd) generated by the n-dimensional diagonal cycles. In particular we determine its extremal rays and we prove that Dn(Cd) is a perfect face of Pseffn(Cd) along which Pseffn(Cd) is locally finitely generated.
Bastianelli, F., Kouvidakis, A., Lopez, A., Viviani, F., Moonen, B. (2019). Effective cycles on the symmetric product of a curve, I: the diagonal cone. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 372(12), 8709-8758 [10.1090/tran/7867].
Effective cycles on the symmetric product of a curve, I: the diagonal cone
Viviani Filippo;
2019-01-01
Abstract
In this paper we investigate the cone Pseffn(Cd) of pseudoeffective n-cycles in the symmetric product Cd of a smooth curve C. We study the convex-geometric properties of the cone Dn(Cd) generated by the n-dimensional diagonal cycles. In particular we determine its extremal rays and we prove that Dn(Cd) is a perfect face of Pseffn(Cd) along which Pseffn(Cd) is locally finitely generated.File | Dimensione | Formato | |
---|---|---|---|
S0002-9947-2019-07867-4.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
627.97 kB
Formato
Adobe PDF
|
627.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.